IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v46y2021i2p595-627.html
   My bibliography  Save this article

Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity

Author

Listed:
  • Francisco Facchinei

    (Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University of Rome, 00185 Rome, Italy)

  • Vyacheslav Kungurtsev

    (Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, 12135 Prague, Czech Republic)

  • Lorenzo Lampariello

    (Department of Business Studies, Roma Tre University, 00145 Rome, Italy)

  • Gesualdo Scutari

    (School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47097)

Abstract

We consider nonconvex constrained optimization problems and propose a new approach to the convergence analysis based on penalty functions. We make use of classical penalty functions in an unconventional way, in that penalty functions only enter in the theoretical analysis of convergence while the algorithm itself is penalty free. Based on this idea, we are able to establish several new results, including the first general analysis for diminishing stepsize methods in nonconvex, constrained optimization, showing convergence to generalized stationary points, and a complexity study for sequential quadratic programming–type algorithms.

Suggested Citation

  • Francisco Facchinei & Vyacheslav Kungurtsev & Lorenzo Lampariello & Gesualdo Scutari, 2021. "Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 595-627, May.
  • Handle: RePEc:inm:ormoor:v:46:y:2021:i:2:p:595-627
    DOI: 10.1287/moor.2020.1079
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/moor.2020.1079
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2020.1079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Facchinei, 1997. "Robust Recursive Quadratic Programming Algorithm Model with Global and Superlinear Convergence Properties," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 543-579, March.
    2. Coralia Cartis & Nicholas I. M. Gould & Philippe L. Toint, 2019. "Evaluation Complexity Bounds for Smooth Constrained Nonlinear Optimization Using Scaled KKT Conditions and High-Order Models," Springer Optimization and Its Applications, in: Ioannis C. Demetriou & Panos M. Pardalos (ed.), Approximation and Optimization, pages 5-26, Springer.
    3. M. V. Solodov, 2004. "On the Sequential Quadratically Constrained Quadratic Programming Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 64-79, February.
    4. Amir Beck & Aharon Ben-Tal & Luba Tetruashvili, 2010. "A sequential parametric convex approximation method with applications to nonconvex truss topology design problems," Journal of Global Optimization, Springer, vol. 47(1), pages 29-51, May.
    5. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    6. Alfred Auslender, 2013. "An Extended Sequential Quadratically Constrained Quadratic Programming Algorithm for Nonlinear, Semidefinite, and Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 183-212, February.
    7. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    2. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    3. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    4. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    5. Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
    6. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    7. Alfred Auslender, 2013. "An Extended Sequential Quadratically Constrained Quadratic Programming Algorithm for Nonlinear, Semidefinite, and Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 183-212, February.
    8. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    9. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    10. Pham Van Quyet & Ha Hoang Kha, 2022. "Energy harvesting maximization for multiuser MIMO SWIPT systems with intelligent reflecting surfaces," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(4), pages 497-511, August.
    11. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    12. Kenji Ueda & Nobuo Yamashita, 2014. "A regularized Newton method without line search for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 321-351, October.
    13. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    14. Marc C. Robini & Lihui Wang & Yuemin Zhu, 2024. "The appeals of quadratic majorization–minimization," Journal of Global Optimization, Springer, vol. 89(3), pages 509-558, July.
    15. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.
    16. Yuning Jiang & Dimitris Kouzoupis & Haoyu Yin & Moritz Diehl & Boris Houska, 2021. "Decentralized Optimization Over Tree Graphs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 384-407, May.
    17. Nesterov, Yurii, 2022. "Quartic Regularity," LIDAM Discussion Papers CORE 2022001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    19. Shuqin Sun & Ting Kei Pong, 2023. "Doubly iteratively reweighted algorithm for constrained compressed sensing models," Computational Optimization and Applications, Springer, vol. 85(2), pages 583-619, June.
    20. J.L. Zhang & X.S. Zhang, 2003. "Sequential Penalty Algorithm for Nonlinear Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 118(3), pages 635-655, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:46:y:2021:i:2:p:595-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.