IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i2d10.1007_s10898-021-01017-y.html
   My bibliography  Save this article

Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations

Author

Listed:
  • Jacek Gondzio

    (The University of Edinburgh)

  • E. Alper Yıldırım

    (The University of Edinburgh)

Abstract

A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.

Suggested Citation

  • Jacek Gondzio & E. Alper Yıldırım, 2021. "Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations," Journal of Global Optimization, Springer, vol. 81(2), pages 293-321, October.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-021-01017-y
    DOI: 10.1007/s10898-021-01017-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01017-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01017-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Immanuel M. Bomze & Werner Schachinger & Reinhard Ullrich, 2018. "The Complexity of Simple Models—A Study of Worst and Typical Hard Cases for the Standard Quadratic Optimization Problem," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 651-674, May.
    2. Luana E. Gibbons & Donald W. Hearn & Panos M. Pardalos & Motakuri V. Ramana, 1997. "Continuous Characterizations of the Maximum Clique Problem," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 754-768, August.
    3. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    4. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Bisori & Matteo Lapucci & Marco Sciandrone, 2022. "A study on sequential minimal optimization methods for standard quadratic problems," 4OR, Springer, vol. 20(4), pages 685-712, December.
    2. Bomze, Immanuel M. & Gabl, Markus & Maggioni, Francesca & Pflug, Georg Ch., 2022. "Two-stage stochastic standard quadratic optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 21-34.
    3. G. Liuzzi & M. Locatelli & V. Piccialli & S. Rass, 2021. "Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems," Computational Optimization and Applications, Springer, vol. 79(3), pages 561-599, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    2. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.
    3. Riccardo Bisori & Matteo Lapucci & Marco Sciandrone, 2022. "A study on sequential minimal optimization methods for standard quadratic problems," 4OR, Springer, vol. 20(4), pages 685-712, December.
    4. Jinyan Fan & Jiawang Nie & Anwa Zhou, 2019. "Completely Positive Binary Tensors," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1087-1100, August.
    5. Yuejian Peng & Qingsong Tang & Cheng Zhao, 2015. "On Lagrangians of r-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 812-825, October.
    6. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
    7. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
    8. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    9. Immanuel M. Bomze & Werner Schachinger, 2020. "Constructing Patterns of (Many) ESSs Under Support Size Control," Dynamic Games and Applications, Springer, vol. 10(3), pages 618-640, September.
    10. Yanming Chang & Yuejian Peng & Yuping Yao, 2016. "Connection between a class of polynomial optimization problems and maximum cliques of non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 881-892, February.
    11. Papp, Dávid & Regős, Krisztina & Domokos, Gábor & Bozóki, Sándor, 2023. "The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices," European Journal of Operational Research, Elsevier, vol. 310(2), pages 511-517.
    12. Badenbroek, Riley & de Klerk, Etienne, 2020. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," Other publications TiSEM 876ff1ab-036c-4635-9688-1, Tilburg University, School of Economics and Management.
    13. Qingsong Tang & Xiangde Zhang & Guoren Wang & Cheng Zhao, 2018. "A continuous characterization of the maximum vertex-weighted clique in hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1250-1260, May.
    14. G. Liuzzi & M. Locatelli & V. Piccialli & S. Rass, 2021. "Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems," Computational Optimization and Applications, Springer, vol. 79(3), pages 561-599, July.
    15. Jinyan Fan & Anwa Zhou, 2017. "A semidefinite algorithm for completely positive tensor decomposition," Computational Optimization and Applications, Springer, vol. 66(2), pages 267-283, March.
    16. Qingsong Tang & Xiangde Zhang & Cheng Zhao & Peng Zhao, 2022. "On the maxima of motzkin-straus programs and cliques of graphs," Journal of Global Optimization, Springer, vol. 84(4), pages 989-1003, December.
    17. de Klerk, Etienne & Badenbroek, Riley, 2022. "Simulated annealing with hit-and-run for convex optimization: complexity analysis and practical perspectives," Other publications TiSEM 323b4588-65e0-4889-a555-9, Tilburg University, School of Economics and Management.
    18. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    19. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.
    20. Gabriele Eichfelder & Patrick Groetzner, 2022. "A note on completely positive relaxations of quadratic problems in a multiobjective framework," Journal of Global Optimization, Springer, vol. 82(3), pages 615-626, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-021-01017-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.