IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i2d10.1007_s10898-019-00814-w.html
   My bibliography  Save this article

Multistart with early termination of descents

Author

Listed:
  • Antanas Žilinskas

    (Vilnius University)

  • Jonathan Gillard

    (Cardiff University)

  • Megan Scammell

    (Cardiff University)

  • Anatoly Zhigljavsky

    (Cardiff University)

Abstract

Multistart is a celebrated global optimization technique frequently applied in practice. In its pure form, multistart has low efficiency. However, the simplicity of multistart and multitude of possibilities of its generalization make it very attractive especially in high-dimensional problems where e.g. Lipschitzian and Bayesian algorithms are not applicable. We propose a version of multistart where most of the local descents are terminated very early; we will call it METOD as an abbreviation for multistart with early termination of descents. The performance of the proposed algorithm is demonstrated on randomly generated test functions with 100 variables and a modest number of local minimizers.

Suggested Citation

  • Antanas Žilinskas & Jonathan Gillard & Megan Scammell & Anatoly Zhigljavsky, 2021. "Multistart with early termination of descents," Journal of Global Optimization, Springer, vol. 79(2), pages 447-462, February.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:2:d:10.1007_s10898-019-00814-w
    DOI: 10.1007/s10898-019-00814-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00814-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00814-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    2. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, June.
    3. R. Haycroft & L. Pronzato & H. P. Wynn & A. Zhigljavsky, 2009. "Studying Convergence of Gradient Algorithms Via Optimal Experimental Design Theory," Springer Optimization and Its Applications, in: Luc Pronzato & Anatoly Zhigljavsky (ed.), Optimal Design and Related Areas in Optimization and Statistics, chapter 2, pages 13-37, Springer.
    4. James K. Hartman, 1973. "Some experiments in global optimization," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(3), pages 569-576, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
    2. Vasiliy V. Grigoriev & Petr N. Vabishchevich, 2021. "Bayesian Estimation of Adsorption and Desorption Parameters for Pore Scale Transport," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    3. Luc Pronzato & Anatoly Zhigljavsky, 2011. "Gradient algorithms for quadratic optimization with fast convergence rates," Computational Optimization and Applications, Springer, vol. 50(3), pages 597-617, December.
    4. Moody Chu & Matthew Lin & Liqi Wang, 2014. "A study of singular spectrum analysis with global optimization techniques," Journal of Global Optimization, Springer, vol. 60(3), pages 551-574, November.
    5. Victor Gergel & Evgeny Kozinov, 2018. "Efficient multicriterial optimization based on intensive reuse of search information," Journal of Global Optimization, Springer, vol. 71(1), pages 73-90, May.
    6. Ferreiro-Ferreiro, Ana M. & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2019. "Basin Hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 282-298.
    7. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    8. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    9. James Calvin, 2010. "A lower bound on convergence rates of nonadaptive algorithms for univariate optimization with noise," Journal of Global Optimization, Springer, vol. 48(1), pages 17-27, September.
    10. Daniela Lera & Yaroslav Sergeyev, 2010. "An information global minimization algorithm using the local improvement technique," Journal of Global Optimization, Springer, vol. 48(1), pages 99-112, September.
    11. Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    12. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    13. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    14. Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
    15. Dawid Tarłowski, 2017. "On the convergence rate issues of general Markov search for global minimum," Journal of Global Optimization, Springer, vol. 69(4), pages 869-888, December.
    16. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.
    17. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.
    18. Lera, Daniela & Posypkin, Mikhail & Sergeyev, Yaroslav D., 2021. "Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    19. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    20. Qiang Yang & Litao Hua & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems," Mathematics, MDPI, vol. 10(5), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:2:d:10.1007_s10898-019-00814-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.