IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3760-d940462.html
   My bibliography  Save this article

Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms

Author

Listed:
  • Linas Stripinis

    (Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-08663 Vilnius, Lithuania
    These authors contributed equally to this work.)

  • Remigijus Paulavičius

    (Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-08663 Vilnius, Lithuania
    These authors contributed equally to this work.)

Abstract

This article considers a box-constrained global optimization problem for Lipschitz continuous functions with an unknown Lipschitz constant. The well-known derivative-free global search algorithm DIRECT (DIvide RECTangle) is a promising approach for such problems. Several studies have shown that recent two-step (global and local) Pareto selection-based algorithms are very efficient among all DIRECT-type approaches. However, despite its encouraging performance, it was also observed that the candidate selection procedure has two possible shortcomings. First, there is no limit on how small the size of selected candidates can be. Secondly, a balancing strategy between global and local candidate selection is missing. Therefore, it may waste function evaluations by over-exploring the current local minimum and delaying finding the global one. This paper reviews and employs different strategies in a two-step Pareto selection framework (1-DTC-GL) to overcome these limitations. A detailed experimental study has revealed that existing strategies do not always improve and sometimes even worsen results. Since 1-DTC-GL is a DIRECT-type algorithm, the results of this paper provide general guidance for all DIRECT-type algorithms on how to deal with excessive local refinement more efficiently.

Suggested Citation

  • Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3760-:d:940462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chun-Yao Lee & Guang-Lin Zhuo, 2021. "A Hybrid Whale Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(13), pages 1-19, June.
    2. Mishra, Sudhanshu, 2006. "Some new test functions for global optimization and performance of repulsive particle swarm method," MPRA Paper 2718, University Library of Munich, Germany.
    3. Qunfeng Liu, 2013. "Linear scaling and the DIRECT algorithm," Journal of Global Optimization, Springer, vol. 56(3), pages 1233-1245, July.
    4. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, December.
    5. Qunfeng Liu & Wanyou Cheng, 2014. "A modified DIRECT algorithm with bilevel partition," Journal of Global Optimization, Springer, vol. 60(3), pages 483-499, November.
    6. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    2. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    3. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    4. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    5. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    6. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    7. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    8. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    9. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    10. Mishra, SK, 2006. "Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions," MPRA Paper 449, University Library of Munich, Germany.
    11. Weitao Sun & Yuan Dong, 2011. "Study of multiscale global optimization based on parameter space partition," Journal of Global Optimization, Springer, vol. 49(1), pages 149-172, January.
    12. Vasiliy V. Grigoriev & Petr N. Vabishchevich, 2021. "Bayesian Estimation of Adsorption and Desorption Parameters for Pore Scale Transport," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    13. Qunfeng Liu & Jinping Zeng, 2015. "Global optimization by multilevel partition," Journal of Global Optimization, Springer, vol. 61(1), pages 47-69, January.
    14. Jonathan Gillard & Anatoly Zhigljavsky, 2013. "Optimization challenges in the structured low rank approximation problem," Journal of Global Optimization, Springer, vol. 57(3), pages 733-751, November.
    15. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    16. Qunfeng Liu & Wanyou Cheng, 2014. "A modified DIRECT algorithm with bilevel partition," Journal of Global Optimization, Springer, vol. 60(3), pages 483-499, November.
    17. Massimiliano Kaucic, 2013. "A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 55(1), pages 165-188, January.
    18. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    19. C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
    20. Mehmet Hakan Satman & Emre Akadal, 2020. "Machine Coded Compact Genetic Algorithms for Real Parameter Optimization Problems," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 43-58, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3760-:d:940462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.