IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p761-d759960.html
   My bibliography  Save this article

Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems

Author

Listed:
  • Qiang Yang

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Litao Hua

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Xudong Gao

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Dongdong Xu

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Zhenyu Lu

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Sang-Woon Jeon

    (Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Korea)

  • Jun Zhang

    (Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Korea
    Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan)

Abstract

Optimization problems become increasingly complicated in the era of big data and Internet of Things, which significantly challenges the effectiveness and efficiency of existing optimization methods. To effectively solve this kind of problems, this paper puts forward a stochastic cognitive dominance leading particle swarm optimization algorithm (SCDLPSO). Specifically, for each particle, two personal cognitive best positions are first randomly selected from those of all particles. Then, only when the cognitive best position of the particle is dominated by at least one of the two selected ones, this particle is updated by cognitively learning from the better personal positions; otherwise, this particle is not updated and directly enters the next generation. With this stochastic cognitive dominance leading mechanism, it is expected that the learning diversity and the learning efficiency of particles in the proposed optimizer could be promoted, and thus the optimizer is expected to explore and exploit the solution space properly. At last, extensive experiments are conducted on a widely acknowledged benchmark problem set with different dimension sizes to evaluate the effectiveness of the proposed SCDLPSO. Experimental results demonstrate that the devised optimizer achieves highly competitive or even much better performance than several state-of-the-art PSO variants.

Suggested Citation

  • Qiang Yang & Litao Hua & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems," Mathematics, MDPI, vol. 10(5), pages 1-34, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:761-:d:759960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/761/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/761/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. P. Anbuudayasankar & K. Ganesh & Sanjay Mohapatra, 2014. "Survey of Methodologies for TSP and VRP," Springer Books, in: Models for Practical Routing Problems in Logistics, edition 127, chapter 0, pages 11-42, Springer.
    2. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    3. Sheetal Ghorpade & Marco Zennaro & Bharat Chaudhari, 2021. "Survey of Localization for Internet of Things Nodes: Approaches, Challenges and Open Issues," Future Internet, MDPI, vol. 13(8), pages 1-26, August.
    4. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.
    5. Qiang Yang & Yong Li & Xu-Dong Gao & Yuan-Yuan Ma & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2021. "An Adaptive Covariance Scaling Estimation of Distribution Algorithm," Mathematics, MDPI, vol. 9(24), pages 1-38, December.
    6. S. P. Anbuudayasankar & K. Ganesh & Sanjay Mohapatra, 2014. "Models for Practical Routing Problems in Logistics," Springer Books, Springer, edition 127, number 978-3-319-05035-5, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian-Tian Wang & Qiang Yang & Xu-Dong Gao, 2023. "Dual Elite Groups-Guided Differential Evolution for Global Numerical Optimization," Mathematics, MDPI, vol. 11(17), pages 1-51, August.
    2. Qiang Yang & Kai-Xuan Zhang & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "A Dimension Group-Based Comprehensive Elite Learning Swarm Optimizer for Large-Scale Optimization," Mathematics, MDPI, vol. 10(7), pages 1-32, March.
    3. Qiang Yang & Xu Guo & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu, 2022. "Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(8), pages 1-32, April.
    4. Mohammad H. Nadimi-Shahraki & Shokooh Taghian & Seyedali Mirjalili & Laith Abualigah, 2022. "Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    5. Qiang Yang & Yu-Wei Bian & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(7), pages 1-39, March.
    6. Qiang Yang & Yufei Jing & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Predominant Cognitive Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(10), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Qiang Yang & Yu-Wei Bian & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(7), pages 1-39, March.
    3. Roberto Saia & Salvatore Carta & Olaf Bergmann, 2021. "Wireless Internet, Multimedia, and Artificial Intelligence: New Applications and Infrastructures," Future Internet, MDPI, vol. 13(9), pages 1-3, September.
    4. Yasser Khan & Mazliham Bin Mohd Su’ud & Muhammad Mansoor Alam & Syed Fayaz Ahmad & Ahmad Y. A. Bani Ahmad (Ayassrah) & Nasir Khan, 2022. "Application of Internet of Things (IoT) in Sustainable Supply Chain Management," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    5. C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
    6. François Bachoc & Céline Helbert & Victor Picheny, 2020. "Gaussian process optimization with failures: classification and convergence proof," Journal of Global Optimization, Springer, vol. 78(3), pages 483-506, November.
    7. Jianmin Dang & Xiaozhen Wang & Ying Xie & Ziyi Fu, 2023. "The Location Optimization of Urban Shared New Energy Vehicles Based on P-Median Model: The Example of Xuzhou City, China," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    8. Qiang Yang & Kai-Xuan Zhang & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "A Dimension Group-Based Comprehensive Elite Learning Swarm Optimizer for Large-Scale Optimization," Mathematics, MDPI, vol. 10(7), pages 1-32, March.
    9. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    10. Qiang Yang & Yufei Jing & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Predominant Cognitive Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    11. Jolan Wauters & Andy Keane & Joris Degroote, 2020. "Development of an adaptive infill criterion for constrained multi-objective asynchronous surrogate-based optimization," Journal of Global Optimization, Springer, vol. 78(1), pages 137-160, September.
    12. A. Herraiz & M. Gutierrez & M. Ortega-Mier, 2022. "Equivalent cyclic polygon of a euclidean travelling salesman problem tour and modified formulation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1427-1450, December.
    13. Yaoting Huang & Boyu Chen & Wenlian Lu & Zhong-Xiao Jin & Ren Zheng, 2022. "Asynchronous optimization of part logistics routing problem," Journal of Global Optimization, Springer, vol. 82(4), pages 803-834, April.
    14. Kaito Majima & Kosuke Kawakami & Kota Ishizuka & Kazuhide Nakata, 2024. "Keyword-Level Bayesian Online Bid Optimization for Sponsored Search Advertising," SN Operations Research Forum, Springer, vol. 5(2), pages 1-32, June.
    15. Torres, Isidro Ramos & Romero Dessens, Luis Felipe & Martínez Flores, José Luis & Olivares Benítez, Elías, 2015. "Review of Comprehensive Approaches in Optimizing AGV Systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Operational Excellence in Logistics and Supply Chains: Optimization Methods, Data-driven Approaches and Security Insights. Proceedings of the Hamburg , volume 22, pages 203-232, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. Antanas Žilinskas & Jonathan Gillard & Megan Scammell & Anatoly Zhigljavsky, 2021. "Multistart with early termination of descents," Journal of Global Optimization, Springer, vol. 79(2), pages 447-462, February.
    17. György Kovács, 2023. "Development of New Mathematical Methods and Software Applications for More Efficient and Sustainable Road Freight Transportation," Sustainability, MDPI, vol. 15(23), pages 1-20, November.
    18. Melinda Timea Fülöp & Miklós Gubán & György Kovács & Mihály Avornicului, 2021. "Economic Development Based on a Mathematical Model: An Optimal Solution Method for the Fuel Supply of International Road Transport Activity," Energies, MDPI, vol. 14(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:761-:d:759960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.