IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i2d10.1007_s10898-019-00866-y.html
   My bibliography  Save this article

Cooperative versus non-cooperative parallel variable neighborhood search strategies: a case study on the capacitated vehicle routing problem

Author

Listed:
  • Panagiotis Kalatzantonakis

    (University of Macedonia)

  • Angelo Sifaleras

    (University of Macedonia)

  • Nikolaos Samaras

    (University of Macedonia)

Abstract

The capacitated vehicle routing problem (CVRP) is a well-known NP-hard combinatorial optimization problem with numerous real-world applications in logistics. In this work, we present a literature review with recent successful parallel implementations of variable neighborhood search regarding different variants of vehicle routing problems. We conduct an experimental study for the CVRP using well-known benchmark instances, and we present and investigate three parallelization strategies that coordinate the communication of the multiple processors. We experimentally evaluate a non-cooperative and two novel cooperation models, the managed cooperative and the parameterized cooperative strategies. Our results constitute a first proof-of-concept for the benefits of this new self-adaptive parameterized cooperative approach, especially in computationally hard instances.

Suggested Citation

  • Panagiotis Kalatzantonakis & Angelo Sifaleras & Nikolaos Samaras, 2020. "Cooperative versus non-cooperative parallel variable neighborhood search strategies: a case study on the capacitated vehicle routing problem," Journal of Global Optimization, Springer, vol. 78(2), pages 327-348, October.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:2:d:10.1007_s10898-019-00866-y
    DOI: 10.1007/s10898-019-00866-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00866-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00866-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    2. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    3. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    4. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    5. Chris Groër & Bruce Golden & Edward Wasil, 2011. "A Parallel Algorithm for the Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 315-330, May.
    6. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    7. Konstantina Skouri & Angelo Sifaleras & Ioannis Konstantaras, 2018. "Open Problems in Green Supply Chain Modeling and Optimization with Carbon Emission Targets," Springer Optimization and Its Applications, in: Panos M. Pardalos & Athanasios Migdalas (ed.), Open Problems in Optimization and Data Analysis, pages 83-90, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Sifaleras & Nenad Mladenović & Panos M. Pardalos, 2020. "Preface to the special issue “ICVNS 2018”," Journal of Global Optimization, Springer, vol. 78(2), pages 239-240, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    2. Karina Thiebaut & Artur Pessoa, 2023. "Approximating the chance-constrained capacitated vehicle routing problem with robust optimization," 4OR, Springer, vol. 21(3), pages 513-531, September.
    3. Yusuf Yilmaz & Can B. Kalayci, 2022. "Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery," Mathematics, MDPI, vol. 10(17), pages 1-22, August.
    4. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    5. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    6. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    7. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    8. Máximo, Vinícius R. & Nascimento, Mariá C.V., 2021. "A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1108-1119.
    9. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    10. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    11. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    12. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    13. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    14. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    15. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    16. Letchford, Adam N. & Salazar-González, Juan-José, 2019. "The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time," European Journal of Operational Research, Elsevier, vol. 272(1), pages 24-31.
    17. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    18. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    19. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    20. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:2:d:10.1007_s10898-019-00866-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.