IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v294y2021i3p1108-1119.html
   My bibliography  Save this article

A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem

Author

Listed:
  • Máximo, Vinícius R.
  • Nascimento, Mariá C.V.

Abstract

Metaheuristics are widely employed to solve hard optimization problems, like vehicle routing problems (VRP), for which exact solution methods are impractical. In particular, local search-based metaheuristics have been successfully applied to the capacitated VRP (CVRP). The CVRP aims at defining the minimum-cost delivery routes for a given set of identical vehicles since each vehicle only travels one route and there is a single (central) depot. The best metaheuristics to the CVRP avoid getting stuck in local optima by embedding specific hill-climbing mechanisms such as diversification strategies into the solution methods. This paper introduces a hybridization of a novel adaptive version of Iterated Local Search with Path-Relinking (AILS-PR) to the CVRP. The major contribution of this paper is an automatic mechanism to control the diversity step of the metaheuristic to allow it to escape from local optima. The results of experiments with 100 benchmark CVPR instances show that AILS-PR outperformed the state-of-the-art CVRP metaheuristics.

Suggested Citation

  • Máximo, Vinícius R. & Nascimento, Mariá C.V., 2021. "A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1108-1119.
  • Handle: RePEc:eee:ejores:v:294:y:2021:i:3:p:1108-1119
    DOI: 10.1016/j.ejor.2021.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172100117X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    4. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    5. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    6. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    7. Helena Ramalhinho Lourenço & Olivier C. Martin & Thomas Stützle, 2019. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 129-168, Springer.
    8. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    9. Schneider, M. & Stenger, A. & Hof, J., 2015. "An Adaptive VNS Algorithm for Vehicle Routing Problems with Intermediate Stops," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardino, Raquel & Paias, Ana, 2024. "The family capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 836-853.
    2. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.
    3. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    4. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    5. Panagiotis Kalatzantonakis & Angelo Sifaleras & Nikolaos Samaras, 2020. "Cooperative versus non-cooperative parallel variable neighborhood search strategies: a case study on the capacitated vehicle routing problem," Journal of Global Optimization, Springer, vol. 78(2), pages 327-348, October.
    6. Ines Sbai & Saoussen Krichen & Olfa Limam, 2022. "Two meta-heuristics for solving the capacitated vehicle routing problem: the case of the Tunisian Post Office," Operational Research, Springer, vol. 22(1), pages 507-549, March.
    7. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    8. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    9. Alberto Santini & Michael Schneider & Thibaut Vidal & Daniele Vigo, 2023. "Decomposition Strategies for Vehicle Routing Heuristics," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 543-559, May.
    10. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    11. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    12. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    13. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    14. Cavaliere, Francesco & Accorsi, Luca & Laganà, Demetrio & Musmanno, Roberto & Vigo, Daniele, 2024. "An efficient heuristic for very large-scale vehicle routing problems with simultaneous pickup and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    15. Martin Simensen & Geir Hasle & Magnus Stålhane, 2022. "Combining hybrid genetic search with ruin-and-recreate for solving the capacitated vehicle routing problem," Journal of Heuristics, Springer, vol. 28(5), pages 653-697, December.
    16. Gandra, Vinícius S.M. & Çalık, Hatice & Toffolo, Túlio A.M. & Carvalho, Marco Antonio M. & Vanden Berghe, Greet, 2022. "The vessel swap-body routing problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 354-369.
    17. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    18. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    19. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    20. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:294:y:2021:i:3:p:1108-1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.