IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v75y2019i3d10.1007_s10898-019-00800-2.html
   My bibliography  Save this article

Parametric monotone function maximization with matroid constraints

Author

Listed:
  • Suning Gong

    (Ocean University of China)

  • Qingqin Nong

    (Ocean University of China)

  • Wenjing Liu

    (Ocean University of China)

  • Qizhi Fang

    (Ocean University of China)

Abstract

We study the problem of maximizing an increasing function $$f:2^N\rightarrow \mathcal {R}_{+}$$ f : 2 N → R + subject to matroid constraints. Gruia Calinescu, Chandra Chekuri, Martin Pál and Jan Vondrák have shown that, if f is nondecreasing and submodular, the continuous greedy algorithm and pipage rounding technique can be combined to find a solution with value at least $$1-1/e$$ 1 - 1 / e of the optimal value. But pipage rounding technique have strong requirement for submodularity. Chandra Chekuri, Jan Vondrák and Rico Zenklusen proposed a rounding technique called contention resolution schemes. They showed that if f is submodular, the objective value of the integral solution rounding by the contention resolution schemes is at least $$1-1/e$$ 1 - 1 / e times of the value of the fractional solution. Let $$f:2^N\rightarrow \mathcal {R}_{+}$$ f : 2 N → R + be an increasing function with generic submodularity ratio $$\gamma \in (0,1]$$ γ ∈ ( 0 , 1 ] , and let $$(N,\mathcal {I})$$ ( N , I ) be a matroid. In this paper, we consider the problem $$\max _{S\in \mathcal {I}}f(S)$$ max S ∈ I f ( S ) and provide a $$\gamma (1-e^{-1})(1-e^{-\gamma }-o(1))$$ γ ( 1 - e - 1 ) ( 1 - e - γ - o ( 1 ) ) -approximation algorithm. Our main tools are the continuous greedy algorithm and contention resolution schemes which are the first time applied to nonsubmodular functions.

Suggested Citation

  • Suning Gong & Qingqin Nong & Wenjing Liu & Qizhi Fang, 2019. "Parametric monotone function maximization with matroid constraints," Journal of Global Optimization, Springer, vol. 75(3), pages 833-849, November.
  • Handle: RePEc:spr:jglopt:v:75:y:2019:i:3:d:10.1007_s10898-019-00800-2
    DOI: 10.1007/s10898-019-00800-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00800-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00800-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Lehmann, Benny & Lehmann, Daniel & Nisan, Noam, 2006. "Combinatorial auctions with decreasing marginal utilities," Games and Economic Behavior, Elsevier, vol. 55(2), pages 270-296, May.
    4. A.A. Ageev & M.I. Sviridenko, 2004. "Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 307-328, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Cui & Donglei Du & Dachuan Xu & Ruiqi Yang, 2023. "Two approximation algorithms for maximizing nonnegative weakly monotonic set functions," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-18, January.
    2. Min Cui & Dachuan Xu & Longkun Guo & Dan Wu, 2022. "Approximation guarantees for parallelized maximization of monotone non-submodular function with a cardinality constraint," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1671-1690, July.
    3. Zhicheng Liu & Longkun Guo & Donglei Du & Dachuan Xu & Xiaoyan Zhang, 2022. "Maximization problems of balancing submodular relevance and supermodular diversity," Journal of Global Optimization, Springer, vol. 82(1), pages 179-194, January.
    4. Cheng Lu & Wenguo Yang & Ruiqi Yang & Suixiang Gao, 2022. "Maximizing a non-decreasing non-submodular function subject to various types of constraints," Journal of Global Optimization, Springer, vol. 83(4), pages 727-751, August.
    5. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    6. Yijing Wang & Dachuan Xu & Donglei Du & Yanjun Jiang, 2022. "Bicriteria streaming algorithms to balance gain and cost with cardinality constraint," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2946-2962, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Bruggmann & Rico Zenklusen, 2019. "Submodular Maximization Through the Lens of Linear Programming," Management Science, INFORMS, vol. 44(4), pages 1221-1244, November.
    2. Maxim Sviridenko & Jan Vondrák & Justin Ward, 2017. "Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1197-1218, November.
    3. Zengfu Wang & Bill Moran & Xuezhi Wang & Quan Pan, 2015. "An accelerated continuous greedy algorithm for maximizing strong submodular functions," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1107-1124, November.
    4. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    5. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    6. Jon Lee & Maxim Sviridenko & Jan Vondrák, 2010. "Submodular Maximization over Multiple Matroids via Generalized Exchange Properties," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 795-806, November.
    7. Cheng Lu & Wenguo Yang & Ruiqi Yang & Suixiang Gao, 2022. "Maximizing a non-decreasing non-submodular function subject to various types of constraints," Journal of Global Optimization, Springer, vol. 83(4), pages 727-751, August.
    8. Yijing Wang & Dachuan Xu & Yishui Wang & Dongmei Zhang, 2020. "Non-submodular maximization on massive data streams," Journal of Global Optimization, Springer, vol. 76(4), pages 729-743, April.
    9. Sekar, Shreyas & Vojnovic, Milan & Yun, Se-Young, 2020. "A test score based approach to stochastic submodular optimization," LSE Research Online Documents on Economics 103176, London School of Economics and Political Science, LSE Library.
    10. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    11. Chandra Chekuri & Tanmay Inamdar & Kent Quanrud & Kasturi Varadarajan & Zhao Zhang, 2022. "Algorithms for covering multiple submodular constraints and applications," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 979-1010, September.
    12. Takanori Maehara & Kazuo Murota, 2015. "Valuated matroid-based algorithm for submodular welfare problem," Annals of Operations Research, Springer, vol. 229(1), pages 565-590, June.
    13. Shreyas Sekar & Milan Vojnovic & Se-Young Yun, 2021. "A Test Score-Based Approach to Stochastic Submodular Optimization," Management Science, INFORMS, vol. 67(2), pages 1075-1092, February.
    14. Marek Adamczyk & Maxim Sviridenko & Justin Ward, 2016. "Submodular Stochastic Probing on Matroids," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1022-1038, August.
    15. Saeed Alaei & Ali Makhdoumi & Azarakhsh Malekian, 2021. "Maximizing Sequence-Submodular Functions and Its Application to Online Advertising," Management Science, INFORMS, vol. 67(10), pages 6030-6054, October.
    16. Zengfu Wang & Bill Moran & Xuezhi Wang & Quan Pan, 2016. "Approximation for maximizing monotone non-decreasing set functions with a greedy method," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 29-43, January.
    17. Alfredo Torrico & Mohit Singh & Sebastian Pokutta & Nika Haghtalab & Joseph (Seffi) Naor & Nima Anari, 2021. "Structured Robust Submodular Maximization: Offline and Online Algorithms," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1590-1607, October.
    18. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    19. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    20. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:3:d:10.1007_s10898-019-00800-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.