IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i2d10.1007_s10878-022-00874-x.html
   My bibliography  Save this article

Algorithms for covering multiple submodular constraints and applications

Author

Listed:
  • Chandra Chekuri

    (University of Illinois)

  • Tanmay Inamdar

    (University of Bergen)

  • Kent Quanrud

    (Purdue University)

  • Kasturi Varadarajan

    (University of Iowa)

  • Zhao Zhang

    (Zhejiang Normal University)

Abstract

We consider the problem of covering multiple submodular constraints. Given a finite ground set N, a weight function $$w: N \rightarrow \mathbb {R}_+$$ w : N → R + , r monotone submodular functions $$f_1,f_2,\ldots ,f_r$$ f 1 , f 2 , … , f r over N and requirements $$k_1,k_2,\ldots ,k_r$$ k 1 , k 2 , … , k r the goal is to find a minimum weight subset $$S \subseteq N$$ S ⊆ N such that $$f_i(S) \ge k_i$$ f i ( S ) ≥ k i for $$1 \le i \le r$$ 1 ≤ i ≤ r . We refer to this problem as Multi-Submod-Cover and it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR. arxiv:abs1808.03260 Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with $$r=1$$ r = 1 Multi-Submod-Cover generalizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced to Submod-SC. A simple greedy algorithm gives an $$O(\log (kr))$$ O ( log ( k r ) ) approximation where $$k = \sum _i k_i$$ k = ∑ i k i and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for Multi-Submod-Cover that covers each constraint to within a factor of $$(1-1/e-\varepsilon )$$ ( 1 - 1 / e - ε ) while incurring an approximation of $$O(\frac{1}{\epsilon }\log r)$$ O ( 1 ϵ log r ) in the cost. Second, we consider the special case when each $$f_i$$ f i is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

Suggested Citation

  • Chandra Chekuri & Tanmay Inamdar & Kent Quanrud & Kasturi Varadarajan & Zhao Zhang, 2022. "Algorithms for covering multiple submodular constraints and applications," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 979-1010, September.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00874-x
    DOI: 10.1007/s10878-022-00874-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00874-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00874-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. A.A. Ageev & M.I. Sviridenko, 2004. "Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 307-328, September.
    4. Gregory Dobson, 1982. "Worst-Case Analysis of Greedy Heuristics for Integer Programming with Nonnegative Data," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 515-531, November.
    5. Wolsey, L.A., 1982. "An analysis of the greedy algorithm for the submodular set covering problem," LIDAM Reprints CORE 519, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Torrico & Mohit Singh & Sebastian Pokutta & Nika Haghtalab & Joseph (Seffi) Naor & Nima Anari, 2021. "Structured Robust Submodular Maximization: Offline and Online Algorithms," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1590-1607, October.
    2. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    3. Simon Bruggmann & Rico Zenklusen, 2019. "Submodular Maximization Through the Lens of Linear Programming," Management Science, INFORMS, vol. 44(4), pages 1221-1244, November.
    4. Jon Lee & Maxim Sviridenko & Jan Vondrák, 2010. "Submodular Maximization over Multiple Matroids via Generalized Exchange Properties," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 795-806, November.
    5. Maxim Sviridenko & Jan Vondrák & Justin Ward, 2017. "Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1197-1218, November.
    6. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    7. Marek Adamczyk & Maxim Sviridenko & Justin Ward, 2016. "Submodular Stochastic Probing on Matroids," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1022-1038, August.
    8. Zengfu Wang & Bill Moran & Xuezhi Wang & Quan Pan, 2015. "An accelerated continuous greedy algorithm for maximizing strong submodular functions," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1107-1124, November.
    9. Zengfu Wang & Bill Moran & Xuezhi Wang & Quan Pan, 2016. "Approximation for maximizing monotone non-decreasing set functions with a greedy method," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 29-43, January.
    10. Suning Gong & Qingqin Nong & Wenjing Liu & Qizhi Fang, 2019. "Parametric monotone function maximization with matroid constraints," Journal of Global Optimization, Springer, vol. 75(3), pages 833-849, November.
    11. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    12. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    13. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    14. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    15. repec:dgr:rugsom:99a17 is not listed on IDEAS
    16. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    17. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.
    18. Zhenning Zhang & Bin Liu & Yishui Wang & Dachuan Xu & Dongmei Zhang, 2022. "Maximizing a monotone non-submodular function under a knapsack constraint," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1125-1148, July.
    19. Zhenning Zhang & Donglei Du & Yanjun Jiang & Chenchen Wu, 2021. "Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint," Journal of Global Optimization, Springer, vol. 80(3), pages 595-616, July.
    20. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    21. Yingfei Wang & Inbal Yahav & Balaji Padmanabhan, 2024. "Smart Testing with Vaccination: A Bandit Algorithm for Active Sampling for Managing COVID-19," Information Systems Research, INFORMS, vol. 35(1), pages 120-144, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00874-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.