IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i4d10.1007_s10898-018-00736-z.html
   My bibliography  Save this article

Lifted polymatroid inequalities for mean-risk optimization with indicator variables

Author

Listed:
  • Alper Atamtürk

    (University of California)

  • Hyemin Jeon

    (University of California)

Abstract

We investigate a mixed 0–1 conic quadratic optimization problem with indicator variables arising in mean-risk optimization. The indicator variables are often used to model non-convexities such as fixed charges or cardinality constraints. Observing that the problem reduces to a submodular function minimization for its binary restriction, we derive three classes of strong convex valid inequalities by lifting the polymatroid inequalities on the binary variables. Computational experiments demonstrate the effectiveness of the inequalities in strengthening the convex relaxations and, thereby, improving the solution times for mean-risk problems with fixed charges and cardinality constraints significantly.

Suggested Citation

  • Alper Atamtürk & Hyemin Jeon, 2019. "Lifted polymatroid inequalities for mean-risk optimization with indicator variables," Journal of Global Optimization, Springer, vol. 73(4), pages 677-699, April.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:4:d:10.1007_s10898-018-00736-z
    DOI: 10.1007/s10898-018-00736-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-00736-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-00736-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    2. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    3. Svatopluk Poljak & Henry Wolkowicz, 1995. "Convex Relaxations of (0, 1)-Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 20(3), pages 550-561, August.
    4. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    5. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alper Atamtürk & Carlos Deck & Hyemin Jeon, 2020. "Successive Quadratic Upper-Bounding for Discrete Mean-Risk Minimization and Network Interdiction," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 346-355, April.
    2. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    2. Jongbin Jung & Seongmoon Kim, 2017. "Developing a dynamic portfolio selection model with a self-adjusted rebalancing method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 766-779, July.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    5. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2024. "Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks," Papers 2407.15532, arXiv.org.
    6. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    7. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    8. Murray, Chase C. & Talukdar, Debabrata & Gosavi, Abhijit, 2010. "Joint Optimization of Product Price, Display Orientation and Shelf-Space Allocation in Retail Category Management," Journal of Retailing, Elsevier, vol. 86(2), pages 125-136.
    9. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    10. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    11. Cristiano Arbex Valle, 2024. "Portfolio optimisation: bridging the gap between theory and practice," Papers 2407.00887, arXiv.org, revised Sep 2024.
    12. Fridman, Ilia & Pesch, Erwin & Shafransky, Yakov, 2020. "Minimizing maximum cost for a single machine under uncertainty of processing times," European Journal of Operational Research, Elsevier, vol. 286(2), pages 444-457.
    13. Zhang, Zhi-Hai & Unnikrishnan, Avinash, 2016. "A coordinated location-inventory problem in closed-loop supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 127-148.
    14. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    15. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    16. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.
    17. Liu, Kanglin & Zhang, Zhi-Hai, 2018. "Capacitated disassembly scheduling under stochastic yield and demand," European Journal of Operational Research, Elsevier, vol. 269(1), pages 244-257.
    18. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    19. Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
    20. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2013. "Regularized robust optimization: the optimal portfolio execution case," Computational Optimization and Applications, Springer, vol. 55(2), pages 341-377, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:4:d:10.1007_s10898-018-00736-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.