IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v59y2014i1p379-397.html
   My bibliography  Save this article

Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach

Author

Listed:
  • Xiaojin Zheng
  • Xiaoling Sun
  • Duan Li
  • Jie Sun

Abstract

In this paper we consider cardinality-constrained convex programs that minimize a convex function subject to a cardinality constraint and other linear constraints. This class of problems has found many applications, including portfolio selection, subset selection and compressed sensing. We propose a successive convex approximation method for this class of problems in which the cardinality function is first approximated by a piecewise linear DC function (difference of two convex functions) and a sequence of convex subproblems is then constructed by successively linearizing the concave terms of the DC function. Under some mild assumptions, we establish that any accumulation point of the sequence generated by the method is a KKT point of the DC approximation problem. We show that the basic algorithm can be refined by adding strengthening cuts in the subproblems. Finally, we report some preliminary computational results on cardinality-constrained portfolio selection problems. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
  • Handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:379-397
    DOI: 10.1007/s10589-013-9582-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9582-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9582-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    2. Juan Pablo Vielma & Shabbir Ahmed & George L. Nemhauser, 2008. "A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 438-450, August.
    3. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    4. B. Blog & G. van der Hoek & A. H. G. Rinnooy Kan & G. T. Timmer, 1983. "The Optimal Selection of Small Portfolios," Management Science, INFORMS, vol. 29(7), pages 792-798, July.
    5. Zhaosong Lu & Yong Zhang, 2010. "Penalty Decomposition Methods for Rank Minimization," Papers 1008.5373, arXiv.org, revised May 2012.
    6. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    7. Duan Li & Xiaoling Sun & Jun Wang, 2006. "Optimal Lot Solution To Cardinality Constrained Mean–Variance Formulation For Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 83-101, January.
    8. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    9. Jacob, Nancy L, 1974. "A Limited-Diversification Portfolio Selection Model for the Small Investor," Journal of Finance, American Finance Association, vol. 29(3), pages 847-856, June.
    10. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    11. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    12. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
    2. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "Sequential optimality conditions for cardinality-constrained optimization problems with applications," Computational Optimization and Applications, Springer, vol. 80(1), pages 185-211, September.
    3. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    4. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    5. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    2. Wei Xu & Jie Tang & Ka Fai Cedric Yiu & Jian Wen Peng, 2024. "An Efficient Global Optimal Method for Cardinality Constrained Portfolio Optimization," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 690-704, March.
    3. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    4. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    5. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    6. Nasim Dehghan Hardoroudi & Abolfazl Keshvari & Markku Kallio & Pekka Korhonen, 2017. "Solving cardinality constrained mean-variance portfolio problems via MILP," Annals of Operations Research, Springer, vol. 254(1), pages 47-59, July.
    7. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    8. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    9. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    10. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    11. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    12. Madani Bezoui & Mustapha Moulaï & Ahcène Bounceur & Reinhardt Euler, 2019. "An iterative method for solving a bi-objective constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 72(2), pages 479-498, March.
    13. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    14. Ralph Steuer & Markus Hirschberger & Kalyanmoy Deb, 2016. "Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers," Journal of Global Optimization, Springer, vol. 64(1), pages 33-48, January.
    15. Tahereh Khodamoradi & Maziar Salahi & Ali Reza Najafi, 2021. "Cardinality-constrained portfolio optimization with short selling and risk-neutral interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 197-214, June.
    16. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    17. Juan Francisco Monge, 2017. "Cardinality constrained portfolio selection via factor models," Papers 1708.02424, arXiv.org.
    18. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    19. Khodamoradi, T. & Salahi, M. & Najafi, A.R., 2020. "Robust CCMV model with short selling and risk-neutral interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    20. Steuer, Ralph E. & Qi, Yue & Wimmer, Maximilian, 2024. "Computing cardinality constrained portfolio selection efficient frontiers via closest correlation matrices," European Journal of Operational Research, Elsevier, vol. 313(2), pages 628-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:379-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.