IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v72y2018i3d10.1007_s10898-018-0655-9.html
   My bibliography  Save this article

An abstract proximal point algorithm

Author

Listed:
  • Laurenţiu Leuştean

    (University of Bucharest
    University of Bucharest
    Simion Stoilow Institute of Mathematics of the Romanian Academy)

  • Adriana Nicolae

    (University of Seville
    Babeş-Bolyai University)

  • Andrei Sipoş

    (Simion Stoilow Institute of Mathematics of the Romanian Academy
    Technische Universität Darmstadt)

Abstract

The proximal point algorithm is a widely used tool for solving a variety of convex optimization problems such as finding zeros of maximally monotone operators, fixed points of nonexpansive mappings, as well as minimizing convex functions. The algorithm works by applying successively so-called “resolvent” mappings associated to the original object that one aims to optimize. In this paper we abstract from the corresponding resolvents employed in these problems the natural notion of jointly firmly nonexpansive families of mappings. This leads to a streamlined method of proving weak convergence of this class of algorithms in the context of complete CAT(0) spaces (and hence also in Hilbert spaces). In addition, we consider the notion of uniform firm nonexpansivity in order to similarly provide a unified presentation of a case where the algorithm converges strongly. Methods which stem from proof mining, an applied subfield of logic, yield in this situation computable and low-complexity rates of convergence.

Suggested Citation

  • Laurenţiu Leuştean & Adriana Nicolae & Andrei Sipoş, 2018. "An abstract proximal point algorithm," Journal of Global Optimization, Springer, vol. 72(3), pages 553-577, November.
  • Handle: RePEc:spr:jglopt:v:72:y:2018:i:3:d:10.1007_s10898-018-0655-9
    DOI: 10.1007/s10898-018-0655-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0655-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0655-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    2. David Ariza-Ruiz & Genaro López-Acedo & Adriana Nicolae, 2015. "The Asymptotic Behavior of the Composition of Firmly Nonexpansive Mappings," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 409-429, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurenţiu Leuştean & Pedro Pinto, 2021. "Quantitative results on a Halpern-type proximal point algorithm," Computational Optimization and Applications, Springer, vol. 79(1), pages 101-125, May.
    2. Andrei Sipoş, 2022. "Abstract strongly convergent variants of the proximal point algorithm," Computational Optimization and Applications, Springer, vol. 83(1), pages 349-380, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    2. G. C. Bento & J. X. Cruz Neto & L. V. Meireles & A. Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Annals of Operations Research, Springer, vol. 316(2), pages 1425-1443, September.
    3. Byoung Jin Choi, 2020. "Δ-Convergence of Products of Operators in p -Uniformly Convex Metric Spaces," Mathematics, MDPI, vol. 8(5), pages 1-8, May.
    4. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    5. Maicon Marques Alves & Samara Costa Lima, 2017. "An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 818-847, December.
    6. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    7. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    8. Sakan Termkaew & Parin Chaipunya & Fumiaki Kohsaka, 2023. "Infinite Product and Its Convergence in CAT(1) Spaces," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    9. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    10. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    11. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    12. Ítalo Dowell Lira Melo & João Xavier Cruz Neto & José Márcio Machado Brito, 2022. "Strong Convergence of Alternating Projections," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 306-324, July.
    13. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    14. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    15. Andrei Sipoş, 2022. "Abstract strongly convergent variants of the proximal point algorithm," Computational Optimization and Applications, Springer, vol. 83(1), pages 349-380, September.
    16. G. C. Bento & J. X. Cruz Neto & P. S. M. Santos, 2013. "An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 108-124, October.
    17. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.
    18. Alexander Lytchak & Anton Petrunin, 2022. "Cyclic Projections in Hadamard Spaces," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 636-642, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:72:y:2018:i:3:d:10.1007_s10898-018-0655-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.