A vector linear programming approach for certain global optimization problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-018-0627-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Andreas Löhne & Andrea Wagner, 2017. "Solving DC programs with a polyhedral component utilizing a multiple objective linear programming solver," Journal of Global Optimization, Springer, vol. 69(2), pages 369-385, October.
- Matthias Ehrgott & Andreas Löhne & Lizhen Shao, 2012. "A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming," Journal of Global Optimization, Springer, vol. 52(4), pages 757-778, April.
- Andreas Hamel & Andreas Löhne & Birgit Rudloff, 2014. "Benson type algorithms for linear vector optimization and applications," Journal of Global Optimization, Springer, vol. 59(4), pages 811-836, August.
- Albert Ferrer & Adil Bagirov & Gleb Beliakov, 2015. "Solving DC programs using the cutting angle method," Journal of Global Optimization, Springer, vol. 61(1), pages 71-89, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simeon vom Dahl & Andreas Löhne, 2020. "Solving polyhedral d.c. optimization problems via concave minimization," Journal of Global Optimization, Springer, vol. 78(1), pages 37-47, September.
- Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
- Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
- Zachary Feinstein & Birgit Rudloff, 2015. "A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle," Papers 1508.02367, arXiv.org, revised Jul 2016.
- Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020.
"A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems,"
Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
- Glaydston de Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier da Cruz Neto & Antoine Soubeyran & João Carlos de Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Post-Print hal-02351104, HAL.
- Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
- Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
- João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
- Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
- Robert Bassett & Khoa Le, 2016. "Multistage Portfolio Optimization: A Duality Result in Conic Market Models," Papers 1601.00712, arXiv.org, revised Jan 2016.
- Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
- Zachary Feinstein & Birgit Rudloff, 2021. "Characterizing and Computing the Set of Nash Equilibria via Vector Optimization," Papers 2109.14932, arXiv.org, revised Dec 2022.
- Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
- Pascal Halffmann & Tobias Dietz & Anthony Przybylski & Stefan Ruzika, 2020. "An inner approximation method to compute the weight set decomposition of a triobjective mixed-integer problem," Journal of Global Optimization, Springer, vol. 77(4), pages 715-742, August.
- Kellner, Florian & Lienland, Bernhard & Utz, Sebastian, 2019. "An a posteriori decision support methodology for solving the multi-criteria supplier selection problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 505-522.
- Piercy, Craig A. & Steuer, Ralph E., 2019. "Reducing wall-clock time for the computation of all efficient extreme points in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 277(2), pages 653-666.
- Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
- c{C}au{g}{i}n Ararat & Nurtai Meimanjan, 2019. "Computation of systemic risk measures: a mixed-integer programming approach," Papers 1903.08367, arXiv.org, revised Aug 2023.
- Stephan Helfrich & Kathrin Prinz & Stefan Ruzika, 2024. "The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1187-1216, September.
- Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
- László Csirmaz, 2016. "Using multiobjective optimization to map the entropy region," Computational Optimization and Applications, Springer, vol. 63(1), pages 45-67, January.
- Nghe, Philippe & Mulder, Bela M. & Tans, Sander J., 2018. "A graph-based algorithm for the multi-objective optimization of gene regulatory networks," European Journal of Operational Research, Elsevier, vol. 270(2), pages 784-793.
More about this item
Keywords
Global optimization; DC programming; Multiobjective linear programming; Linear vector optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:72:y:2018:i:2:d:10.1007_s10898-018-0627-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.