IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v100y2024i1d10.1007_s00186-023-00847-8.html
   My bibliography  Save this article

An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems

Author

Listed:
  • Fritz Bökler

    (Osnabrück University)

  • Sophie N. Parragh

    (Johannes Kepler University Linz)

  • Markus Sinnl

    (Johannes Kepler University Linz)

  • Fabien Tricoire

    (Vienna University of Economics and Business)

Abstract

In this paper, we present an outer approximation algorithm for computing the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems (MOMILPs). It produces the extreme points (i.e., the vertices) as well as the facets of the Edgeworth–Pareto hull. We note that these extreme points are the extreme supported non-dominated points of a MOMILP. We also show how to extend the concept of geometric duality for multi-objective linear programming problems to the Edgeworth–Pareto hull of MOMILPs and use this extension to develop the algorithm. The algorithm relies on a novel oracle that solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the extreme supported non-dominated points in the case of MOMILPs. Thus, for MOMILPs for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay—a result that was formerly only known for the computation of extreme supported non-dominated points. Our algorithm can be an attractive option to compute lower bound sets within multi-objective branch-and-bound algorithms for solving MOMILPs. This is for several reasons as (i) the algorithm starts from a trivial valid lower bound set then iteratively improves it, thus at any iteration of the algorithm a lower bound set is available; (ii) the algorithm also produces efficient solutions (i.e., solutions in the decision space); (iii) in any iteration of the algorithm, a relaxation of the MOMILP can be solved, and the obtained points and facets still provide a valid lower bound set. Moreover, for the special case of multi-objective linear programming problems, the algorithm solves the problem to global optimality. A computational study on a set of benchmark instances from the literature is provided.

Suggested Citation

  • Fritz Bökler & Sophie N. Parragh & Markus Sinnl & Fabien Tricoire, 2024. "An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 263-290, August.
  • Handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-023-00847-8
    DOI: 10.1007/s00186-023-00847-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-023-00847-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-023-00847-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pascal Halffmann & Tobias Dietz & Anthony Przybylski & Stefan Ruzika, 2020. "An inner approximation method to compute the weight set decomposition of a triobjective mixed-integer problem," Journal of Global Optimization, Springer, vol. 77(4), pages 715-742, August.
    2. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    3. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    4. A. M. Geoffrion & R. Nauss, 1977. "Exceptional Paper--Parametric and Postoptimality Analysis in Integer Linear Programming," Management Science, INFORMS, vol. 23(5), pages 453-466, January.
    5. Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
    6. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    7. E. Andrew Boyd, 1994. "Fenchel Cutting Planes for Integer Programs," Operations Research, INFORMS, vol. 42(1), pages 53-64, February.
    8. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2021. "Multi-directional local search for sustainable supply chain network design," International Journal of Production Research, Taylor & Francis Journals, vol. 59(2), pages 412-428, January.
    9. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    10. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    11. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    12. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    13. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    14. Tyler Perini & Natashia Boland & Diego Pecin & Martin Savelsbergh, 2020. "A Criterion Space Method for Biobjective Mixed Integer Programming: The Boxed Line Method," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 16-39, January.
    15. Pasquale Avella & Maurizio Boccia & Igor Vasilyev, 2010. "A computational study of exact knapsack separation for the generalized assignment problem," Computational Optimization and Applications, Springer, vol. 45(3), pages 543-555, April.
    16. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    17. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    18. Matthias Ehrgott & Andreas Löhne & Lizhen Shao, 2012. "A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming," Journal of Global Optimization, Springer, vol. 52(4), pages 757-778, April.
    19. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    20. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: The Triangle Splitting Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 597-618, November.
    21. Luc, Dinh The, 2011. "On duality in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 210(2), pages 158-168, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Henggeler Antunes & Carlos M. Fonseca & Luís Paquete & Michael Stiglmayr, 2024. "Special issue on exact and approximation methods for mixed-integer multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    2. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    3. Miriam Enzi & Sophie N. Parragh & Jakob Puchinger, 2022. "The bi-objective multimodal car-sharing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 307-348, June.
    4. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    5. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    6. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    7. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    8. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    9. Diego Pecin & Ian Herszterg & Tyler Perini & Natashia Boland & Martin Savelsbergh, 2024. "A fast and robust algorithm for solving biobjective mixed integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 221-262, August.
    10. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    11. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    12. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    13. Fattahi, Ali & Turkay, Metin, 2018. "A one direction search method to find the exact nondominated frontier of biobjective mixed-binary linear programming problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 415-425.
    14. Masar Al-Rabeeah & Santosh Kumar & Ali Al-Hasani & Elias Munapo & Andrew Eberhard, 2019. "Bi-objective integer programming analysis based on the characteristic equation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 937-944, October.
    15. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    16. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    17. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
    18. Sophie N. Parragh & Fabien Tricoire & Walter J. Gutjahr, 2022. "A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 419-459, June.
    19. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
    20. Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-023-00847-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.