IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i2p520-538.html
   My bibliography  Save this article

Disjunctive linear separation conditions and mixed-integer formulations for aircraft conflict resolution

Author

Listed:
  • Dias, Fernando H.C.
  • Hijazi, Hassan
  • Rey, David

Abstract

We address the aircraft conflict resolution problem in air traffic control. We introduce new mixed-integer programming formulations for aircraft conflict resolution with speed, heading and altitude control which are based on disjunctive linear separation conditions. We first examine the two-dimensional aircraft conflict resolution problem with speed and heading control represented as continuous decision variables. We show that the proposed disjunctive linear separation conditions are equivalent to the classical nonlinear conditions for aircraft separation. Further, we characterise conflict-free trajectories based on aircraft velocity bounds and propose a simple pre-processing algorithm to identify aircraft pairs which are either always conflict-free, or which cannot be separated using speed and heading control only. We then incorporate altitude control and propose a lexicographic optimisation formulation that aims to minimise the number of flight level changes before resolving outstanding conflicts via two-dimensional velocity control. The proposed mixed-integer programming formulations are nonconvex, and we propose convex relaxations, decomposition methods and constraint generation algorithms to solve the two-dimensional and lexicographic optimisation formulations to guaranteed optimality. Numerical experiments on four types of conflict resolution benchmarking instances are conducted to test the performance of the proposed mixed-integer formulations. Further, the proposed method is compared against two benchmarks based on state-of-the-art approaches for the aircraft conflict resolution problem. Our numerical results show that the proposed method largely outperforms both benchmarks in terms of runtime and is able to solve significantly more instances to global optimality.

Suggested Citation

  • Dias, Fernando H.C. & Hijazi, Hassan & Rey, David, 2022. "Disjunctive linear separation conditions and mixed-integer formulations for aircraft conflict resolution," European Journal of Operational Research, Elsevier, vol. 296(2), pages 520-538.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:520-538
    DOI: 10.1016/j.ejor.2021.03.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    2. David Rey & Christophe Rapine & Rémy Fondacci & Nour-Eddin El Faouzi, 2016. "Subliminal Speed Control in Air Traffic Management: Optimization and Simulation," Transportation Science, INFORMS, vol. 50(1), pages 240-262, February.
    3. Lehouillier, Thibault & Omer, Jérémy & Soumis, François & Desaulniers, Guy, 2017. "Two decomposition algorithms for solving a minimum weight maximum clique model for the air conflict resolution problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 696-712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Dias & David Rey, 2024. "Aircraft conflict resolution with trajectory recovery using mixed-integer programming," Journal of Global Optimization, Springer, vol. 90(4), pages 1031-1067, December.
    2. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    3. Mercedes Pelegrín & Martina Cerulli, 2023. "Aircraft Conflict Resolution: A Benchmark Generator," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 274-285, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonia Cafieri & Claudia D’Ambrosio, 2018. "Feasibility pump for aircraft deconfliction with speed regulation," Journal of Global Optimization, Springer, vol. 71(3), pages 501-515, July.
    2. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    3. Mercedes Pelegrín & Martina Cerulli, 2023. "Aircraft Conflict Resolution: A Benchmark Generator," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 274-285, March.
    4. Thibault Lehouillier & Moncef Ilies Nasri & François Soumis & Guy Desaulniers & Jérémy Omer, 2017. "Solving the Air Conflict Resolution Problem Under Uncertainty Using an Iterative Biobjective Mixed Integer Programming Approach," Transportation Science, INFORMS, vol. 51(4), pages 1242-1258, November.
    5. Fernando Dias & David Rey, 2024. "Aircraft conflict resolution with trajectory recovery using mixed-integer programming," Journal of Global Optimization, Springer, vol. 90(4), pages 1031-1067, December.
    6. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    7. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    8. Yanchao Liu, 2019. "A Progressive Motion-Planning Algorithm and Traffic Flow Analysis for High-Density 2D Traffic," Transportation Science, INFORMS, vol. 53(6), pages 1501-1525, November.
    9. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    10. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    11. Martina Cerulli & Claudia D’Ambrosio & Leo Liberti & Mercedes Pelegrín, 2021. "Detecting and solving aircraft conflicts using bilevel programming," Journal of Global Optimization, Springer, vol. 81(2), pages 529-557, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:520-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.