IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v69y2017i4d10.1007_s10898-017-0541-x.html
   My bibliography  Save this article

Adaptive block coordinate DIRECT algorithm

Author

Listed:
  • Qinghua Tao

    (Tsinghua University)

  • Xiaolin Huang

    (Shanghai Jiao Tong University)

  • Shuning Wang

    (Tsinghua University)

  • Li Li

    (Tsinghua University)

Abstract

DIviding RECTangles (DIRECT) is an efficient and popular method in dealing with bound constrained optimization problems. However, DIRECT suffers from dimension curse, since its computational complexity soars when dimension increases. Besides, DIRECT also converges slowly when the objective function is flat. In this paper, we propose a coordinate DIRECT algorithm, which coincides with the spirits of other coordinate update algorithms. We transform the original problem into a series of sub-problems, where only one or several coordinates are selected to optimize and the rest keeps fixed. For each sub-problem, coordinately dividing the feasible domain enjoys low computational burden. Besides, we develop adaptive schemes to keep the efficiency and flexibility to tackle different functions. Specifically, we use block coordinate update, of which the size could be adaptively selected, and we also employ sequential quadratic programming to conduct the local search to efficiently accelerate the convergence even when the objective function is flat. With these techniques, the proposed algorithm achieves promising performance on both efficiency and accuracy in numerical experiments.

Suggested Citation

  • Qinghua Tao & Xiaolin Huang & Shuning Wang & Li Li, 2017. "Adaptive block coordinate DIRECT algorithm," Journal of Global Optimization, Springer, vol. 69(4), pages 797-822, December.
  • Handle: RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0541-x
    DOI: 10.1007/s10898-017-0541-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0541-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0541-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qunfeng Liu & Wanyou Cheng, 2014. "A modified DIRECT algorithm with bilevel partition," Journal of Global Optimization, Springer, vol. 60(3), pages 483-499, November.
    2. Ratko Grbić & Emmanuel Nyarko & Rudolf Scitovski, 2013. "A modification of the DIRECT method for Lipschitz global optimization for a symmetric function," Journal of Global Optimization, Springer, vol. 57(4), pages 1193-1212, December.
    3. Qunfeng Liu & Jinping Zeng, 2015. "Global optimization by multilevel partition," Journal of Global Optimization, Springer, vol. 61(1), pages 47-69, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    2. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    3. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    4. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    5. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    6. Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.
    7. Sabo, Kristian & Grahovac, Danijel & Scitovski, Rudolf, 2020. "Incremental method for multiple line detection problem — iterative reweighted approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 588-602.
    8. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    9. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    10. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    11. Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    12. Kristian Sabo & Rudolf Scitovski & Šime Ungar & Zoran Tomljanović, 2024. "A method for searching for a globally optimal k-partition of higher-dimensional datasets," Journal of Global Optimization, Springer, vol. 89(3), pages 633-653, July.
    13. Rudolf Scitovski & Snježana Majstorović & Kristian Sabo, 2021. "A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem," Journal of Global Optimization, Springer, vol. 79(3), pages 669-686, March.
    14. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    15. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    16. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    17. C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
    18. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    19. Abdullah Al-Dujaili & S. Suresh & N. Sundararajan, 2016. "MSO: a framework for bound-constrained black-box global optimization algorithms," Journal of Global Optimization, Springer, vol. 66(4), pages 811-845, December.
    20. Haitao Liu & Shengli Xu & Ying Ma & Xiaofang Wang, 2015. "Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces," Journal of Global Optimization, Springer, vol. 63(2), pages 229-251, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0541-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.