IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i2p205-227.html
   My bibliography  Save this article

MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems

Author

Listed:
  • Qunfeng Liu
  • Jinping Zeng
  • Gang Yang

Abstract

Although DIRECT global optimization algorithm quickly gets close to the basin of the optimum, it often takes much longer to refine the solution to a high degree of accuracy. This behavior of DIRECT is similar to the “smooth mode phenomenon” encountered when solving linear systems discretized from partial differential equation (PDE). In the case of PDE, this smooth mode phenomenon can be eliminated efficiently by the multigrid algorithm in which the PDE solver is applied at different levels of discretization. In this paper we adapt the multigrid approach to a robust version of DIRECT algorithm, obtaining a “multilevel” robust DIRECT (MrDIRECT) algorithm. Although additional parameters are needed, our numerical results show that MrDIRECT is insensitive to the parameters, and the parameters setting proposed in this paper performs very well on the tested sets of benchmark problems, in terms of the speed with which the global optimum is found to a high degree of accuracy. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:2:p:205-227
    DOI: 10.1007/s10898-014-0241-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0241-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0241-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giampaolo Liuzzi & Stefano Lucidi & Veronica Piccialli, 2010. "A partition-based global optimization algorithm," Journal of Global Optimization, Springer, vol. 48(1), pages 113-128, September.
    2. Qunfeng Liu, 2013. "Linear scaling and the DIRECT algorithm," Journal of Global Optimization, Springer, vol. 56(3), pages 1233-1245, July.
    3. Qunfeng Liu & Wanyou Cheng, 2014. "A modified DIRECT algorithm with bilevel partition," Journal of Global Optimization, Springer, vol. 60(3), pages 483-499, November.
    4. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    2. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    3. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    4. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    5. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    6. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    7. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    8. Kaiwen Ma & Luis Miguel Rios & Atharv Bhosekar & Nikolaos V. Sahinidis & Sreekanth Rajagopalan, 2023. "Branch-and-Model: a derivative-free global optimization algorithm," Computational Optimization and Applications, Springer, vol. 85(2), pages 337-367, June.
    9. Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    2. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    3. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    4. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    5. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    6. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    7. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    8. Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    9. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    10. Qunfeng Liu & Jinping Zeng, 2015. "Global optimization by multilevel partition," Journal of Global Optimization, Springer, vol. 61(1), pages 47-69, January.
    11. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    12. Abdullah Al-Dujaili & S. Suresh & N. Sundararajan, 2016. "MSO: a framework for bound-constrained black-box global optimization algorithms," Journal of Global Optimization, Springer, vol. 66(4), pages 811-845, December.
    13. Haitao Liu & Shengli Xu & Ying Ma & Xiaofang Wang, 2015. "Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces," Journal of Global Optimization, Springer, vol. 63(2), pages 229-251, October.
    14. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    15. Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.
    16. D. Serafino & G. Liuzzi & V. Piccialli & F. Riccio & G. Toraldo, 2011. "A Modified DIviding RECTangles Algorithm for a Problem in Astrophysics," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 175-190, October.
    17. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    18. Qunfeng Liu & Wanyou Cheng, 2014. "A modified DIRECT algorithm with bilevel partition," Journal of Global Optimization, Springer, vol. 60(3), pages 483-499, November.
    19. G. Di Pillo & G. Liuzzi & S. Lucidi & V. Piccialli & F. Rinaldi, 2016. "A DIRECT-type approach for derivative-free constrained global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 361-397, November.
    20. Konstantin Barkalov & Roman Strongin, 2018. "Solving a set of global optimization problems by the parallel technique with uniform convergence," Journal of Global Optimization, Springer, vol. 71(1), pages 21-36, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:2:p:205-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.