IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i3d10.1007_s10898-016-0480-y.html
   My bibliography  Save this article

Decoupling linear and nonlinear regimes: an evaluation of efficiency for nonlinear multidimensional optimization

Author

Listed:
  • Christopher M. Cotnoir

    (Old Dominion University)

  • Balša Terzić

    (Old Dominion University
    Old Dominion University)

Abstract

Solving a large subset of multidimensional nonlinear optimization problems can be significantly improved by decoupling their intrinsically linear and nonlinear parts. This effectively decreases the dimensionality of the problem, reduces the search space and improves the efficiency of the optimization. This decoupled approach is generalized with mathematical formalism and its superiority over standard methods empirically verified and quantified on a couple of examples involving $$\chi ^2$$ χ 2 curve fitting to data.

Suggested Citation

  • Christopher M. Cotnoir & Balša Terzić, 2017. "Decoupling linear and nonlinear regimes: an evaluation of efficiency for nonlinear multidimensional optimization," Journal of Global Optimization, Springer, vol. 68(3), pages 663-675, July.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0480-y
    DOI: 10.1007/s10898-016-0480-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0480-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0480-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antanas Žilinskas & Julius Žilinskas, 2013. "A hybrid global optimization algorithm for non-linear least squares regression," Journal of Global Optimization, Springer, vol. 56(2), pages 265-277, June.
    2. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanpeng Zheng & Renzhong Feng & Aitong Huang, 2020. "The Optimal Shape Parameter for the Least Squares Approximation Based on the Radial Basis Function," Mathematics, MDPI, vol. 8(11), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    2. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    3. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    4. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    5. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    6. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    7. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    8. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    9. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    10. James Calvin & Gražina Gimbutienė & William O. Phillips & Antanas Žilinskas, 2018. "On convergence rate of a rectangular partition based global optimization algorithm," Journal of Global Optimization, Springer, vol. 71(1), pages 165-191, May.
    11. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    12. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    13. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0480-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.