IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1923-d438753.html
   My bibliography  Save this article

The Optimal Shape Parameter for the Least Squares Approximation Based on the Radial Basis Function

Author

Listed:
  • Sanpeng Zheng

    (School of Mathematics Science & Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, Beihang University, Beijing 100191, China)

  • Renzhong Feng

    (School of Mathematics Science & Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, Beihang University, Beijing 100191, China)

  • Aitong Huang

    (School of Mathematics Science & Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, Beihang University, Beijing 100191, China)

Abstract

The radial basis function (RBF) is a class of approximation functions commonly used in interpolation and least squares. The RBF is especially suitable for scattered data approximation and high dimensional function approximation. The smoothness and approximation accuracy of the RBF are affected by its shape parameter. There has been some research on the shape parameter, but the research on the optimal shape parameter of the least squares based on the RBF is scarce. This paper proposes a way for the measurement of the optimal shape parameter of the least squares approximation based on the RBF and an algorithm to solve the corresponding optimal parameter. The method consists of considering the shape parameter as an optimization variable of the least squares problem, such that the linear least squares problem becomes nonlinear. A dimensionality reduction is applied to the nonlinear least squares problem in order to simplify the objective function. To solve the optimization problem efficiently after the dimensional reduction, the derivative-free optimization is adopted. The numerical experiments indicate that the proposed method is efficient and reliable. Multiple kinds of RBFs are tested for their effects and compared. It is found through the experiments that the RBF least squares with the optimal shape parameter is much better than the polynomial least squares. The method is successfully applied to the fitting of real data.

Suggested Citation

  • Sanpeng Zheng & Renzhong Feng & Aitong Huang, 2020. "The Optimal Shape Parameter for the Least Squares Approximation Based on the Radial Basis Function," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1923-:d:438753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher M. Cotnoir & Balša Terzić, 2017. "Decoupling linear and nonlinear regimes: an evaluation of efficiency for nonlinear multidimensional optimization," Journal of Global Optimization, Springer, vol. 68(3), pages 663-675, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    2. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1923-:d:438753. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.