IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp770-784.html
   My bibliography  Save this article

Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation

Author

Listed:
  • Jian, Jinbao
  • Pan, Shanshan
  • Yang, Linfeng

Abstract

Short-term hydrothermal scheduling issue is usually hard to tackle on account of its highly non-convex and non-differentiable characteristics. A popular strategy for handling these difficulties is to reformulate the issue by various linearization techniques. However, in this process, a fairly large number of continuous/binary variables and constraints will be introduced, which may result in a heavy computational burden. In this study, a logarithmic size mixed-integer linear programming formulation is presented for this issue, that is, only a logarithmic size of binary variables and constraints will be required to piecewise linearize the nonlinear functions. Based on such a formulation, a global optimum is therefore can be solved efficiently. To remove the linearization errors and cope with the network loss, a derivable non-linear programming formulation is derived. By optimizing this formulation via the powerful interior point method, where the previous global solution of mixed-integer linear programming formulation is used as the starting point, a promising feasible solution is consequently attained. Numerical results show that the presented logarithmic size mixed-integer linear programming formulation is more efficient than the generalized one and when it is incorporated into the solution procedure, the proposed methodology is competitive with currently state-of-the-art approaches.

Suggested Citation

  • Jian, Jinbao & Pan, Shanshan & Yang, Linfeng, 2019. "Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation," Energy, Elsevier, vol. 171(C), pages 770-784.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:770-784
    DOI: 10.1016/j.energy.2019.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. Nguyen, Thang Trung & Vo, Dieu Ngoc & Dinh, Bach Hoang, 2018. "An effectively adaptive selective cuckoo search algorithm for solving three complicated short-term hydrothermal scheduling problems," Energy, Elsevier, vol. 155(C), pages 930-956.
    3. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & B. Gharehpetian, G., 2017. "Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 116-129.
    4. Nazari-Heris, Morteza & Babaei, Amir Fakhim & Mohammadi-Ivatloo, Behnam & Asadi, Somayeh, 2018. "Improved harmony search algorithm for the solution of non-linear non-convex short-term hydrothermal scheduling," Energy, Elsevier, vol. 151(C), pages 226-237.
    5. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    6. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Haghrah, A., 2017. "Optimal short-term generation scheduling of hydrothermal systems by implementation of real-coded genetic algorithm based on improved Mühlenbein mutation," Energy, Elsevier, vol. 128(C), pages 77-85.
    7. Juan P. Ruiz & Ignacio E. Grossmann, 2017. "Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques," Journal of Global Optimization, Springer, vol. 67(1), pages 43-58, January.
    8. Chuanxiong Kang & Min Guo & Jinwen Wang, 2017. "Short-Term Hydrothermal Scheduling Using a Two-Stage Linear Programming with Special Ordered Sets Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3329-3341, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Hao & Feng, Suzhen & Chen, Cheng & Wang, Jinwen, 2022. "A new three-triangle based method to linearly concave hydropower output in long-term reservoir operation," Energy, Elsevier, vol. 250(C).
    2. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    3. P. M. R. Bento & S. J. P. S. Mariano & M. R. A. Calado & L. A. F. M. Ferreira, 2020. "A Novel Lagrangian Multiplier Update Algorithm for Short-Term Hydro-Thermal Coordination," Energies, MDPI, vol. 13(24), pages 1-19, December.
    4. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    5. Ali Ahmad & Syed Abdul Rahman Kashif & Arslan Ashraf & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "Coordinated Economic Operation of Hydrothermal Units with HVDC Link Based on Lagrange Multipliers," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    6. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    7. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Quasi-oppositional turbulent water flow-based optimization for cascaded short term hydrothermal scheduling with valve-point effects and multiple fuels," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    2. Maha Mohamed & Abdel-Raheem Youssef & Salah Kamel & Mohamed Ebeed & Ehab E. Elattar, 2021. "Optimal Scheduling of Hydro–Thermal–Wind–Photovoltaic Generation Using Lightning Attachment Procedure Optimizer," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    3. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    4. Nazari-Heris, Morteza & Babaei, Amir Fakhim & Mohammadi-Ivatloo, Behnam & Asadi, Somayeh, 2018. "Improved harmony search algorithm for the solution of non-linear non-convex short-term hydrothermal scheduling," Energy, Elsevier, vol. 151(C), pages 226-237.
    5. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    6. Simab, Mohsen & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel, 2018. "Multi-objective programming of pumped-hydro-thermal scheduling problem using normal boundary intersection and VIKOR," Energy, Elsevier, vol. 143(C), pages 854-866.
    7. Suresh K. Damodaran & T. K. Sunil Kumar, 2018. "Hydro-Thermal-Wind Generation Scheduling Considering Economic and Environmental Factors Using Heuristic Algorithms," Energies, MDPI, vol. 11(2), pages 1-19, February.
    8. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2022. "A two-point estimate approach for energy management of multi-carrier energy systems incorporating demand response programs," Energy, Elsevier, vol. 249(C).
    9. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Quasi-oppositional turbulent water flow-based optimization for cascaded short term hydrothermal scheduling with valve-point effects and multiple fuels," Energy, Elsevier, vol. 251(C).
    10. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.
    11. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & B. Gharehpetian, G., 2017. "Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 116-129.
    12. Omid Hoseynpour & Behnam Mohammadi-ivatloo & Morteza Nazari-Heris & Somayeh Asadi, 2017. "Application of Dynamic Non-Linear Programming Technique to Non-Convex Short-Term Hydrothermal Scheduling Problem," Energies, MDPI, vol. 10(9), pages 1-17, September.
    13. Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Siano, Pierluigi, 2020. "Optimal generation scheduling of large-scale multi-zone combined heat and power systems," Energy, Elsevier, vol. 210(C).
    14. Chuanxiong Kang & Cheng Chen & Jinwen Wang, 2018. "An Efficient Linearization Method for Long-Term Operation of Cascaded Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3391-3404, August.
    15. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    16. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    17. P. M. R. Bento & S. J. P. S. Mariano & M. R. A. Calado & L. A. F. M. Ferreira, 2020. "A Novel Lagrangian Multiplier Update Algorithm for Short-Term Hydro-Thermal Coordination," Energies, MDPI, vol. 13(24), pages 1-19, December.
    18. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    19. Panda, Debashish & Ramteke, Manojkumar, 2019. "Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 68-82.
    20. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:770-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.