IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i1p90-94.html
   My bibliography  Save this article

Improvements on removing nonoptimal support points in D-optimum design algorithms

Author

Listed:
  • Harman, Radoslav
  • Pronzato, Luc

Abstract

We improve the inequality used in Pronzato [2003. Removing non-optimal support points in D-optimum design algorithms. Statist. Probab. Lett. 63, 223-228] to remove points from the design space during the search for a D-optimum design. Let [xi] be any design on a compact space with a nonsingular information matrix, and let m+[epsilon] be the maximum of the variance function d([xi],x) over all . We prove that any support point x* of a D-optimum design on must satisfy the inequality . We show that this new lower bound on d([xi],x*) is, in a sense, the best possible, and how it can be used to accelerate algorithms for D-optimum design.

Suggested Citation

  • Harman, Radoslav & Pronzato, Luc, 2007. "Improvements on removing nonoptimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 90-94, January.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:1:p:90-94
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00199-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. M. Titterington, 1978. "Estimation of Correlation Coefficients by Ellipsoidal Trimming," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(3), pages 227-234, November.
    2. Pronzato, Luc, 2003. "Removing non-optimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 223-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    2. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    3. Belmiro P. M. Duarte & Weng Kee Wong, 2015. "Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach," International Statistical Review, International Statistical Institute, vol. 83(2), pages 239-262, August.
    4. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    5. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2007. "Improving updating rules in multiplicativealgorithms for computing D-optimal designs," Technical Reports 2007,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    7. Tim Holland-Letz & Holger Dette & Didier Renard, 2012. "Efficient Algorithms for Optimal Designs with Correlated Observations in Pharmacokinetics and Dose-Finding Studies," Biometrics, The International Biometric Society, vol. 68(1), pages 138-145, March.
    8. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    9. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    10. Radoslav Harman & Eva Benková, 2017. "Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 201-225, February.
    11. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    12. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
    13. Harman, Radoslav & Rosa, Samuel, 2019. "Removal of the points that do not support an E-optimal experimental design," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 83-89.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    2. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    3. Peter Goos & Bradley Jones & Utami Syafitri, 2016. "I-Optimal Design of Mixture Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 899-911, April.
    4. Harman, Radoslav & Rosa, Samuel, 2019. "Removal of the points that do not support an E-optimal experimental design," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 83-89.
    5. Nolan, D., 1999. "On min-max majority and deepest points," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 325-333, July.
    6. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    7. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    8. Dolia, A.N. & Harris, C.J. & Shawe-Taylor, J.S. & Titterington, D.M., 2007. "Kernel ellipsoidal trimming," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 309-324, September.
    9. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    10. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    11. Beirlant, J. & Mason, D. M. & Vynckier, C., 1999. "Goodness-of-fit analysis for multivariate normality based on generalized quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 119-142, April.
    12. Martin-Martin, R. & Torsney, B. & Lopez-Fidalgo, J., 2007. "Construction of marginally and conditionally restricted designs using multiplicative algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5547-5561, August.
    13. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
    14. Pronzato, Luc, 2003. "Removing non-optimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 223-228, July.
    15. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:1:p:90-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.