IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i1p1-28.html
   My bibliography  Save this article

GLODS: Global and Local Optimization using Direct Search

Author

Listed:
  • A. Custódio
  • J. Madeira

Abstract

Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • A. Custódio & J. Madeira, 2015. "GLODS: Global and Local Optimization using Direct Search," Journal of Global Optimization, Springer, vol. 62(1), pages 1-28, May.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:1:p:1-28
    DOI: 10.1007/s10898-014-0224-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0224-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0224-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rommel Regis & Christine Shoemaker, 2013. "A quasi-multistart framework for global optimization of expensive functions using response surface models," Journal of Global Optimization, Springer, vol. 56(4), pages 1719-1753, August.
    2. Hedar, Abdel-Rahman & Fukushima, Masao, 2006. "Tabu Search directed by direct search methods for nonlinear global optimization," European Journal of Operational Research, Elsevier, vol. 170(2), pages 329-349, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyam Das, 2021. "Recursive Modified Pattern Search on High-Dimensional Simplex : A Blackbox Optimization Technique," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 440-483, November.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    3. Alberto Lovison & Kaisa Miettinen, 2021. "On the Extension of the DIRECT Algorithm to Multiple Objectives," Journal of Global Optimization, Springer, vol. 79(2), pages 387-412, February.
    4. A. L. Custódio & J. F. A. Madeira, 2018. "MultiGLODS: global and local multiobjective optimization using direct search," Journal of Global Optimization, Springer, vol. 72(2), pages 323-345, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    2. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    3. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    4. Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
    5. Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
    6. Juliane Müller & Joshua D. Woodbury, 2017. "GOSAC: global optimization with surrogate approximation of constraints," Journal of Global Optimization, Springer, vol. 69(1), pages 117-136, September.
    7. Fei Wei & Yuping Wang & Hongwei Lin, 2014. "A New Filled Function Method with Two Parameters for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 510-527, November.
    8. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    9. Gouvêa, Érica J.C. & Regis, Rommel G. & Soterroni, Aline C. & Scarabello, Marluce C. & Ramos, Fernando M., 2016. "Global optimization using q-gradients," European Journal of Operational Research, Elsevier, vol. 251(3), pages 727-738.
    10. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    11. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    12. Hvattum, Lars Magnus & Glover, Fred, 2009. "Finding local optima of high-dimensional functions using direct search methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 31-45, May.
    13. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    14. Hirsch, M.J. & Pardalos, P.M. & Resende, M.G.C., 2010. "Speeding up continuous GRASP," European Journal of Operational Research, Elsevier, vol. 205(3), pages 507-521, September.
    15. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    16. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    17. Tiago Maritan Ugulino Araújo & Lisieux Marie M. S. Andrade & Carlos Magno & Lucídio Anjos Formiga Cabral & Roberto Quirino Nascimento & Cláudio N. Meneses, 2016. "DC-GRASP: directing the search on continuous-GRASP," Journal of Heuristics, Springer, vol. 22(4), pages 365-382, August.
    18. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.
    19. Piotrowski, Adam P. & Napiorkowski, Jaroslaw J. & Kiczko, Adam, 2012. "Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 33-46.
    20. Hwang Yi & Mi-Jin Kim & Yuri Kim & Sun-Sook Kim & Kyu-In Lee, 2019. "Rapid Simulation of Optimally Responsive Façade during Schematic Design Phases: Use of a New Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 11(9), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:1:p:1-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.