IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i4p1719-1753.html
   My bibliography  Save this article

A quasi-multistart framework for global optimization of expensive functions using response surface models

Author

Listed:
  • Rommel Regis
  • Christine Shoemaker

Abstract

We present the AQUARS (A QUAsi-multistart Response Surface) framework for finding the global minimum of a computationally expensive black-box function subject to bound constraints. In a traditional multistart approach, the local search method is blind to the trajectories of the previous local searches. Hence, the algorithm might find the same local minima even if the searches are initiated from points that are far apart. In contrast, AQUARS is a novel approach that locates the promising local minima of the objective function by performing local searches near the local minima of a response surface (RS) model of the objective function. It ignores neighborhoods of fully explored local minima of the RS model and it bounces between the best partially explored local minimum and the least explored local minimum of the RS model. We implement two AQUARS algorithms that use a radial basis function model and compare them with alternative global optimization methods on an 8-dimensional watershed model calibration problem and on 18 test problems. The alternatives include EGO, GLOBALm, MLMSRBF (Regis and Shoemaker in INFORMS J Comput 19(4):497–509, 2007 ), CGRBF-Restart (Regis and Shoemaker in J Global Optim 37(1):113–135 2007 ), and multi level single linkage (MLSL) coupled with two types of local solvers: SQP and Mesh Adaptive Direct Search (MADS) combined with kriging. The results show that the AQUARS methods generally use fewer function evaluations to identify the global minimum or to reach a target value compared to the alternatives. In particular, they are much better than EGO and MLSL coupled to MADS with kriging on the watershed calibration problem and on 15 of the test problems. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Rommel Regis & Christine Shoemaker, 2013. "A quasi-multistart framework for global optimization of expensive functions using response surface models," Journal of Global Optimization, Springer, vol. 56(4), pages 1719-1753, August.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:4:p:1719-1753
    DOI: 10.1007/s10898-012-9940-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9940-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9940-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Regis, Rommel G. & Shoemaker, Christine A., 2007. "Parallel radial basis function methods for the global optimization of expensive functions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 514-535, October.
    3. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    4. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, March.
    5. Rommel G. Regis & Christine A. Shoemaker, 2007. "A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 497-509, November.
    6. Zsolt Ugray & Leon Lasdon & John Plummer & Fred Glover & James Kelly & Rafael Martí, 2007. "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 328-340, August.
    7. Dionne M. Aleman & H. Edwin Romeijn & James F. Dempsey, 2009. "A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 62-76, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    2. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    3. Chris A. Kieslich & Fani Boukouvala & Christodoulos A. Floudas, 2018. "Optimization of black-box problems using Smolyak grids and polynomial approximations," Journal of Global Optimization, Springer, vol. 71(4), pages 845-869, August.
    4. Juliane Müller & Joshua D. Woodbury, 2017. "GOSAC: global optimization with surrogate approximation of constraints," Journal of Global Optimization, Springer, vol. 69(1), pages 117-136, September.
    5. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    6. A. Custódio & J. Madeira, 2015. "GLODS: Global and Local Optimization using Direct Search," Journal of Global Optimization, Springer, vol. 62(1), pages 1-28, May.
    7. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    8. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    2. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    3. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    4. Kleijnen, Jack P.C. & Beers, Wim van & Nieuwenhuyse, Inneke van, 2010. "Constrained optimization in expensive simulation: Novel approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 164-174, April.
    5. Hau T. Mai & Jaewook Lee & Joowon Kang & H. Nguyen-Xuan & Jaehong Lee, 2022. "An Improved Blind Kriging Surrogate Model for Design Optimization Problems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    6. Tipaluck Krityakierne & Taimoor Akhtar & Christine A. Shoemaker, 2016. "SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems," Journal of Global Optimization, Springer, vol. 66(3), pages 417-437, November.
    7. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Pseudo expected improvement criterion for parallel EGO algorithm," Journal of Global Optimization, Springer, vol. 68(3), pages 641-662, July.
    8. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    9. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    10. Komarudin & Tim De Feyter & Marie-Anne Guerry & Greet Vanden Berghe, 2020. "The extended roster quality staffing problem: addressing roster quality variation within a staffing planning period," Journal of Scheduling, Springer, vol. 23(2), pages 253-264, April.
    11. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    12. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    13. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    14. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    15. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    16. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    17. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
    18. J.-J. Sinou & L. Nechak & S. Besset, 2018. "Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor," Complexity, Hindawi, vol. 2018, pages 1-26, March.
    19. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    20. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:4:p:1719-1753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.