IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i1d10.1007_s10957-017-1203-3.html
   My bibliography  Save this article

Conditional Gradient Method for Double-Convex Fractional Programming Matrix Problems

Author

Listed:
  • Abderrahman Bouhamidi

    (Université du Littoral Côte d’Opale)

  • Mohammed Bellalij

    (Université de Valenciennes)

  • Rentsen Enkhbat

    (National University of Mongolia)

  • Khalid Jbilou

    (Université du Littoral Côte d’Opale)

  • Marcos Raydan

    (Universidad Simón Bolívar)

Abstract

We consider the problem of optimizing the ratio of two convex functions over a closed and convex set in the space of matrices. This problem appears in several applications and can be classified as a double-convex fractional programming problem. In general, the objective function is nonconvex but, nevertheless, the problem has some special features. Taking advantage of these features, a conditional gradient method is proposed and analyzed, which is suitable for matrix problems. The proposed scheme is applied to two different specific problems, including the well-known trace ratio optimization problem which arises in many engineering and data processing applications. Preliminary numerical experiments are presented to illustrate the properties of the proposed scheme.

Suggested Citation

  • Abderrahman Bouhamidi & Mohammed Bellalij & Rentsen Enkhbat & Khalid Jbilou & Marcos Raydan, 2018. "Conditional Gradient Method for Double-Convex Fractional Programming Matrix Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 163-177, January.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1203-3
    DOI: 10.1007/s10957-017-1203-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1203-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1203-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schaible, Siegfried & Ibaraki, Toshidide, 1983. "Fractional programming," European Journal of Operational Research, Elsevier, vol. 12(4), pages 325-338, April.
    2. Z. A. Liang & H. X. Huang & P. M. Pardalos, 2001. "Optimality Conditions and Duality for a Class of Nonlinear Fractional Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 611-619, September.
    3. Schaible, Siegfried, 1981. "Fractional programming: Applications and algorithms," European Journal of Operational Research, Elsevier, vol. 7(2), pages 111-120, June.
    4. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oumaima Benchettou & Abdeslem Hafid Bentbib & Abderrahman Bouhamidi, 2023. "An Accelerated Tensorial Double Proximal Gradient Method for Total Variation Regularization Problem," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 111-134, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching-Feng Wen & Hsien-Chung Wu, 2011. "Using the Dinkelbach-type algorithm to solve the continuous-time linear fractional programming problems," Journal of Global Optimization, Springer, vol. 49(2), pages 237-263, February.
    2. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    3. Chong Hyun Park & Gemma Berenguer, 2020. "Supply Constrained Location‐Distribution in Not‐for‐Profit Settings," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2461-2483, November.
    4. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    5. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    6. Ahmad, I. & Sharma, Sarita, 2008. "Symmetric duality for multiobjective fractional variational problems involving cones," European Journal of Operational Research, Elsevier, vol. 188(3), pages 695-704, August.
    7. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    8. Harold P. Benson, 2006. "Maximizing the ratio of two convex functions over a convex set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 309-317, June.
    9. Jalili Marand, Ata & Li, Hongyan & Thorstenson, Anders, 2019. "Joint inventory control and pricing in a service-inventory system," International Journal of Production Economics, Elsevier, vol. 209(C), pages 78-91.
    10. Bram L. Gorissen, 2015. "Robust Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 508-528, August.
    11. Joaquim Júdice & Valentina Sessa & Masao Fukushima, 2022. "Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 545-573, June.
    12. Hladík, Milan, 2010. "Generalized linear fractional programming under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 205(1), pages 42-46, August.
    13. Goedhart, Marc H. & Spronk, Jaap, 1995. "Financial planning with fractional goals," European Journal of Operational Research, Elsevier, vol. 82(1), pages 111-124, April.
    14. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    15. Ching-Feng Wen & Hsien-Chung Wu, 2012. "Using the parametric approach to solve the continuous-time linear fractional max–min problems," Journal of Global Optimization, Springer, vol. 54(1), pages 129-153, September.
    16. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    17. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    18. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    19. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    20. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1203-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.