IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v54y2012i2p341-351.html
   My bibliography  Save this article

Canonical dual approach to solving the maximum cut problem

Author

Listed:
  • Zhenbo Wang
  • Shu-Cherng Fang
  • David Gao
  • Wenxun Xing

Abstract

This paper presents a canonical dual approach for finding either an optimal or approximate solution to the maximum cut problem (MAX CUT). We show that, by introducing a linear perturbation term to the objective function, the maximum cut problem is perturbed to have a dual problem which is a concave maximization problem over a convex feasible domain under certain conditions. Consequently, some global optimality conditions are derived for finding an optimal or approximate solution. A gradient decent algorithm is proposed for this purpose and computational examples are provided to illustrate the proposed approach. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Zhenbo Wang & Shu-Cherng Fang & David Gao & Wenxun Xing, 2012. "Canonical dual approach to solving the maximum cut problem," Journal of Global Optimization, Springer, vol. 54(2), pages 341-351, October.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:341-351
    DOI: 10.1007/s10898-012-9881-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9881-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9881-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Gao & Ning Ruan, 2010. "Solutions to quadratic minimization problems with box and integer constraints," Journal of Global Optimization, Springer, vol. 47(3), pages 463-484, July.
    2. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vittorio Latorre & Simone Sagratella, 2016. "A canonical duality approach for the solution of affine quasi-variational inequalities," Journal of Global Optimization, Springer, vol. 64(3), pages 433-449, March.
    2. Yi Chen & David Gao, 2016. "Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions," Journal of Global Optimization, Springer, vol. 64(3), pages 417-431, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    2. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    3. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    4. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    5. repec:dgr:rugsom:99a17 is not listed on IDEAS
    6. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    7. Pierre Fouilhoux & A. Mahjoub, 2012. "Solving VLSI design and DNA sequencing problems using bipartization of graphs," Computational Optimization and Applications, Springer, vol. 51(2), pages 749-781, March.
    8. Goldengorin, Boris & Ghosh, Diptesh, 2004. "A Multilevel Search Algorithm for the Maximization of Submodular Functions," Research Report 04A20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    9. Hongwei Liu & Sanyang Liu & Fengmin Xu, 2003. "A Tight Semidefinite Relaxation of the MAX CUT Problem," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 237-245, September.
    10. Goldengorin, Boris & Tijssen, Gert A. & Tso, Michael, 1999. "The maximization of submodular functions : old and new proofs for the correctness of the dichotomy algorithm," Research Report 99A17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    11. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    12. repec:dgr:rugsom:98a08 is not listed on IDEAS
    13. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    14. Ling, Ai-Fan & Xu, Cheng-Xian & Xu, Feng-Min, 2009. "A discrete filled function algorithm embedded with continuous approximation for solving max-cut problems," European Journal of Operational Research, Elsevier, vol. 197(2), pages 519-531, September.
    15. Chuangchuang Sun, 2023. "A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming," Mathematics, MDPI, vol. 11(21), pages 1-27, October.
    16. F. Liers & G. Pardella, 2012. "Partitioning planar graphs: a fast combinatorial approach for max-cut," Computational Optimization and Applications, Springer, vol. 51(1), pages 323-344, January.
    17. Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.
    19. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.
    20. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    21. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    22. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:341-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.