IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v50y2011i4p695-712.html
   My bibliography  Save this article

Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations

Author

Listed:
  • X. Zheng
  • X. Sun
  • D. Li

Abstract

No abstract is available for this item.

Suggested Citation

  • X. Zheng & X. Sun & D. Li, 2011. "Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations," Journal of Global Optimization, Springer, vol. 50(4), pages 695-712, August.
  • Handle: RePEc:spr:jglopt:v:50:y:2011:i:4:p:695-712
    DOI: 10.1007/s10898-010-9630-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-010-9630-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-010-9630-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    2. A. T. Phillips & J. B. Rosen, 1990. "Guaranteed ϵ‐approximate solution for indefinite quadratic global minimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 499-514, August.
    3. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    4. NESTEROV, Yu., 1998. "Semidefinite relaxation and nonconvex quadratic optimization," LIDAM Reprints CORE 1362, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    6. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    7. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    8. B. Kalantari & J. B. Rosen, 1987. "An Algorithm for Global Minimization of Linearly Constrained Concave Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 544-561, August.
    9. Le Thi Hoai An & Pham Dinh Tao & Le Dung Muu, 1998. "A Combined D.C. Optimization—Ellipsoidal Branch-and-Bound Algorithm for Solving Nonconvex Quadratic Programming Problems," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 9-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaotian & Wang, Xin, 2019. "Flexible parking reservation system and pricing: A continuum approximation approach," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 408-434.
    2. Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
    3. Xiaojin Zheng & Yutong Pan & Xueting Cui, 2018. "Quadratic convex reformulation for nonconvex binary quadratically constrained quadratic programming via surrogate constraint," Journal of Global Optimization, Springer, vol. 70(4), pages 719-735, April.
    4. Mohammad Keyanpour & Naser Osmanpour, 2018. "On solving quadratically constrained quadratic programming problem with one non-convex constraint," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 320-336, June.
    5. Samuel Burer & Sunyoung Kim & Masakazu Kojima, 2014. "Faster, but weaker, relaxations for quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 59(1), pages 27-45, October.
    6. Santi, Éverton & Aloise, Daniel & Blanchard, Simon J., 2016. "A model for clustering data from heterogeneous dissimilarities," European Journal of Operational Research, Elsevier, vol. 253(3), pages 659-672.
    7. Marcia Fampa & Jon Lee & Wendel Melo, 2017. "On global optimization with indefinite quadratics," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 309-337, September.
    8. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    9. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    10. Temadher A. Almaadeed & Saeid Ansary Karbasy & Maziar Salahi & Abdelouahed Hamdi, 2022. "On Indefinite Quadratic Optimization over the Intersection of Balls and Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 246-264, July.
    11. Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
    12. Marandi, Ahmadreza, 2017. "Aspects of quadratic optimization - nonconvexity, uncertainty, and applications," Other publications TiSEM d2b9c576-7128-4ee4-939a-7, Tilburg University, School of Economics and Management.
    13. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    2. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.
    3. Ramtin Madani & Mohsen Kheirandishfard & Javad Lavaei & Alper Atamtürk, 2020. "Penalized semidefinite programming for quadratically-constrained quadratic optimization," Journal of Global Optimization, Springer, vol. 78(3), pages 423-451, November.
    4. Yakut, Oguz, 2021. "Implementation of hydraulically driven barrel shooting control by utilizing artificial neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1206-1223.
    5. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    6. Md. Yousuf Gazi & Khandakar Tahmida Tafhim, 2019. "Investigation of Heavy-mineral Deposits Using Multispectral Satellite Imagery in the Eastern Coastal Margin of Bangladesh," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 16-22, October.
    7. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    8. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    9. Tansel, Aysit & Karao?lan, Deniz, 2016. "The Causal Effect of Education on Health Behaviors: Evidence from Turkey," IZA Discussion Papers 10020, Institute of Labor Economics (IZA).
    10. Timothy K.M. Beatty & Erling Røed Larsen & Dag Einar Sommervoll, 2005. "Measuring the Price of Housing Consumption for Owners in the CPI," Discussion Papers 427, Statistics Norway, Research Department.
    11. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    12. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.
    13. repec:dau:papers:123456789/5389 is not listed on IDEAS
    14. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    15. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    16. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    17. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    18. Alberto Cabada & Om Kalthoum Wanassi, 2020. "Existence Results for Nonlinear Fractional Problems with Non-Homogeneous Integral Boundary Conditions," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    19. Odysseas Kosmas & Pieter Boom & Andrey P. Jivkov, 2021. "On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
    20. Hossein Karshenas & Concha Bielza & Pedro Larrañaga, 2015. "Interval-based ranking in noisy evolutionary multi-objective optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 517-555, June.
    21. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:50:y:2011:i:4:p:695-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.