IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1689-d596820.html
   My bibliography  Save this article

On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates

Author

Listed:
  • Odysseas Kosmas

    (Department of MACE, University of Manchester, Oxford Road, Manchester M13 9PL, UK)

  • Pieter Boom

    (Department of MACE, University of Manchester, Oxford Road, Manchester M13 9PL, UK)

  • Andrey P. Jivkov

    (Department of MACE, University of Manchester, Oxford Road, Manchester M13 9PL, UK)

Abstract

The deformation of a solid due to changing boundary conditions is described by a deformation gradient in Euclidean space. If the deformation process is reversible (conservative), the work done by the changing boundary conditions is stored as potential (elastic) energy, a function of the deformation gradient invariants. Based on this, in the present work we built a “discrete energy model” that uses maps between nodal positions of a discrete mesh linked with the invariants of the deformation gradient via standard barycentric coordinates. A special derivation is provided for domains tessellated by tetrahedrons, where the energy functionals are constrained by prescribed boundary conditions via Lagrange multipliers. The analysis of these domains is performed via energy minimisation, where the constraints are eliminated via pre-multiplication of the discrete equations by a discrete null-space matrix of the constraint gradients. Numerical examples are provided to verify the accuracy of the proposed technique. The standard barycentric coordinate system in this work is restricted to three-dimensional (3-D) convex polytopes. We show that for an explicit energy expression, applicable also to non-convex polytopes, the general barycentric coordinates constitute fundamental tools. We define, in addition, the discrete energy via a gradient for general polytopes, which is a natural extension of the definition for discrete domains tessellated by tetrahedra. We, finally, prove that the resulting expressions can consistently describe the deformation of solids.

Suggested Citation

  • Odysseas Kosmas & Pieter Boom & Andrey P. Jivkov, 2021. "On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1689-:d:596820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    2. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    3. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    4. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    5. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    6. Odysseas Kosmas & Dimitrios Papadopoulos & Dimitrios Vlachos, 2020. "Geometric Derivation and Analysis of Multi-Symplectic Numerical Schemes for Differential Equations," Springer Optimization and Its Applications, in: Nicholas J. Daras & Themistocles M. Rassias (ed.), Computational Mathematics and Variational Analysis, pages 207-226, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yakut, Oguz, 2021. "Implementation of hydraulically driven barrel shooting control by utilizing artificial neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1206-1223.
    2. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    3. Md. Yousuf Gazi & Khandakar Tahmida Tafhim, 2019. "Investigation of Heavy-mineral Deposits Using Multispectral Satellite Imagery in the Eastern Coastal Margin of Bangladesh," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 16-22, October.
    4. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    5. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    6. Tansel, Aysit & Karao?lan, Deniz, 2016. "The Causal Effect of Education on Health Behaviors: Evidence from Turkey," IZA Discussion Papers 10020, Institute of Labor Economics (IZA).
    7. Timothy K.M. Beatty & Erling Røed Larsen & Dag Einar Sommervoll, 2005. "Measuring the Price of Housing Consumption for Owners in the CPI," Discussion Papers 427, Statistics Norway, Research Department.
    8. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    9. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.
    10. repec:dau:papers:123456789/5389 is not listed on IDEAS
    11. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    12. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    13. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    14. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    15. Alberto Cabada & Om Kalthoum Wanassi, 2020. "Existence Results for Nonlinear Fractional Problems with Non-Homogeneous Integral Boundary Conditions," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    16. Hossein Karshenas & Concha Bielza & Pedro Larrañaga, 2015. "Interval-based ranking in noisy evolutionary multi-objective optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 517-555, June.
    17. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    18. Beddoe, Gareth R. & Petrovic, Sanja, 2006. "Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering," European Journal of Operational Research, Elsevier, vol. 175(2), pages 649-671, December.
    19. Hans Wiklund, 2011. "Why High Participatory Ideals Fail In Practice: A Bottom-Up Approach To Public Nonparticipation In Eia," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 159-178.
    20. Vítor João Pereira Domingues Martinho, 2020. "Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices," Agriculture, MDPI, vol. 10(1), pages 1-19, January.
    21. Rabih Salhab & Roland P. Malhamé & Jerome Le Ny, 2018. "A Dynamic Collective Choice Model with an Advertiser," Dynamic Games and Applications, Springer, vol. 8(3), pages 490-506, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1689-:d:596820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.