IDEAS home Printed from https://ideas.repec.org/a/spr/jenvss/v8y2018i4d10.1007_s13412-018-0480-y.html
   My bibliography  Save this article

Political ecology of Costa Rica’s climate policy: contextualizing climate governance

Author

Listed:
  • Emily Benton Hite

    (University of Colorado)

Abstract

Climate change is a global problem with distinct local impacts that challenge the application of universal policy mechanisms. Climate governance is the broad multiscalar, mixed method approach to mitigate and adapt to climate change. It is founded on neoliberal market logics that commodify carbon, while also attempting to be socially and environmentally sustainable. This research focuses on hydroelectricity, a climate governance mechanism that is simultaneously promoted as a solution to climate change and critiqued for its negative social and environmental impacts. This paradox is explored by assessing the assemblage of interactions occurring within Costa Rica, a place known for their sustainable development and renewable energy production. Local indigenous communities, state, and non-state actors voice a diverse array of perspectives regarding construction of the Diquís hydroelectric project, which the state promotes as a key component of its climate plan. To some indigenous peoples, the project is a threat to their landscapes, livelihoods, and cultures; to others, its delay results in missed economic opportunities. In this paper, I utilize political ecology to explore these diverse perspectives in order to contextualize the local dynamics of global climate governance, providing insights for both climate policy in Costa Rica and climate governance mechanisms broadly.

Suggested Citation

  • Emily Benton Hite, 2018. "Political ecology of Costa Rica’s climate policy: contextualizing climate governance," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 8(4), pages 469-476, December.
  • Handle: RePEc:spr:jenvss:v:8:y:2018:i:4:d:10.1007_s13412-018-0480-y
    DOI: 10.1007/s13412-018-0480-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13412-018-0480-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13412-018-0480-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koo, Bonsang, 2017. "Preparing hydropower projects for the post-Paris regime: An econometric analysis of the main drivers for registration in the Clean Development Mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 868-877.
    2. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    3. Philip Fearnside, 2005. "Do Hydroelectric Dams Mitigate Global Warming? The Case of Brazil's CuruÁ-una Dam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(4), pages 675-691, October.
    4. Watts, David & Albornoz, Constanza & Watson, Andrea, 2015. "Clean Development Mechanism (CDM) after the first commitment period: Assessment of the world׳s portfolio and the role of Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1176-1189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirley, Rebekah G. & Word, Jettie, 2018. "Rights, rivers and renewables: Lessons from hydropower conflict in Borneo on the role of cultural politics in energy planning for Small Island Developing States," Utilities Policy, Elsevier, vol. 55(C), pages 189-199.
    2. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    3. Andrés Velastegui-Montoya & Aline de Lima & Viviana Herrera-Matamoros, 2022. "What Is the Socioeconomic Impact of the Tucuruí Dam on Its Surrounding Municipalities?," Sustainability, MDPI, vol. 14(3), pages 1-11, January.
    4. Bianchini, Irineu & da Cunha Santino, Marcela Bianchessi, 2011. "Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation," Ecological Modelling, Elsevier, vol. 222(7), pages 1263-1271.
    5. Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
    6. Amrita Raghoebarsing & Angèle Reinders, 2019. "The Role of Photovoltaics (PV) in the Present and Future Situation of Suriname," Energies, MDPI, vol. 12(1), pages 1-16, January.
    7. Isabel L. Jones & Joseph W. Bull, 2020. "Major dams and the challenge of achieving “No Net Loss” of biodiversity in the tropics," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(2), pages 435-443, March.
    8. Aniseh S. Bro & Emilio Moran & Miquéias Freitas Calvi, 2018. "Market Participation in the Age of Big Dams: The Belo Monte Hydroelectric Dam and Its Impact on Rural Agrarian Households," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    9. Costa, Francisco J M & Szerman, Dimitri & Assunção, Juliano, 2018. "Local Economic Impacts of Hydroelectric Power Plants: Evidence from Brazil," SocArXiv kzhs6, Center for Open Science.
    10. Demarty, M. & Bastien, J., 2011. "GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements," Energy Policy, Elsevier, vol. 39(7), pages 4197-4206, July.
    11. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    12. Guilherme Henrique Almeida Pereira & Vanessa Francieli Vital Silva & Rodrigo Camara & Vanessa Aparecida Fréo & Marcos Gervasio Pereira, 2021. "Artificial flooding changes soil chemistry and carbon dynamics in upland forests next to hydropower plant in Amazon basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7537-7549, May.
    13. Ávila, Leandro & Mine, Miriam R.M & Kaviski, Eloy & Detzel, Daniel H.M., 2021. "Evaluation of hydro-wind complementarity in the medium-term planning of electrical power systems by joint simulation of periodic streamflow and wind speed time series: A Brazilian case study," Renewable Energy, Elsevier, vol. 167(C), pages 685-699.
    14. Wang, Zhaoxia & Zhao, Jing & Li, Meng, 2017. "Analysis and optimization of carbon trading mechanism for renewable energy application in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 435-451.
    15. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    16. Elie, Luc & Granier, Caroline & Rigot, Sandra, 2021. "The different types of renewable energy finance: A Bibliometric analysis," Energy Economics, Elsevier, vol. 93(C).
    17. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    18. A.M. Ramirez-Tovar & Ricardo Moreno-Chuquen & Renata Moreno-Quintero, 2022. "Land-use in the Electric Colombian System: Hidden Impacts and Risks of Large-scale Renewable Projects," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 127-134, March.
    19. Shobeir Karami & Ezatollah Karami, 2020. "Sustainability assessment of dams," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2919-2940, April.
    20. Denielle Perry & Ian Harrison & Stephannie Fernandes & Sarah Burnham & Alana Nichols, 2021. "Global Analysis of Durable Policies for Free-Flowing River Protections," Sustainability, MDPI, vol. 13(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jenvss:v:8:y:2018:i:4:d:10.1007_s13412-018-0480-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.