IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1630-d738811.html
   My bibliography  Save this article

What Is the Socioeconomic Impact of the Tucuruí Dam on Its Surrounding Municipalities?

Author

Listed:
  • Andrés Velastegui-Montoya

    (Facultad de Ingeniería en Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Guayaquil P.O. Box 09-01-5863, Ecuador
    Geoscience Institute, Federal University of Pará, Belém 66075-110, Brazil)

  • Aline de Lima

    (Geoscience Institute, Federal University of Pará, Belém 66075-110, Brazil)

  • Viviana Herrera-Matamoros

    (Facultad de Ingeniería en Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Guayaquil P.O. Box 09-01-5863, Ecuador
    Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria)

Abstract

Hydroelectric energy is known for being renewable, clean, efficient and harmless in comparison to other nonrenewable energy sources. Nonetheless, the installation of a hydroelectric power complex (HC) in places, such as the Amazon, have proven to cause land cover changes, and alter local population dynamics. Issues like migration and city expansion can cause economic, social and cultural impacts locally, while the benefits are seen in other regions. The main objective of this study is to evaluate the socioeconomic indicators of the municipalities directly affected by the Tucuruí HPC. The study took into consideration three scenarios: the post-inauguration of the HC in 1988 (phase I), the beginning of construction in 2000 (phase II), and the completion of the Tucuruí HC in 2010 (phase III). Two types of multivariate analysis were conducted: the principal component analysis and cluster analysis, in order to identify the variables related to quality of life, and to be able to group the municipalities which have a similar quality of life. During the three scenarios studied, Tucuruí remained the only municipality with the highest quality of life index in the entire region, revealing the inequality present in the study area, which is something to be considered during the development of public policies.

Suggested Citation

  • Andrés Velastegui-Montoya & Aline de Lima & Viviana Herrera-Matamoros, 2022. "What Is the Socioeconomic Impact of the Tucuruí Dam on Its Surrounding Municipalities?," Sustainability, MDPI, vol. 14(3), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1630-:d:738811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tundisi, J.G. & Goldemberg, J. & Matsumura-Tundisi, T. & Saraiva, A.C.F., 2014. "How many more dams in the Amazon?," Energy Policy, Elsevier, vol. 74(C), pages 703-708.
    2. Daglish, Toby & de Bragança, Gabriel Godofredo Fiuza & Owen, Sally & Romano, Teresa, 2021. "Pricing effects of the electricity market reform in Brazil," Energy Economics, Elsevier, vol. 97(C).
    3. de Jong, P. & Sánchez, A.S. & Esquerre, K. & Kalid, R.A. & Torres, E.A., 2013. "Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 526-535.
    4. Tolmasquim, Maurício T. & de Barros Correia, Tiago & Addas Porto, Natália & Kruger, Wikus, 2021. "Electricity market design and renewable energy auctions: The case of Brazil," Energy Policy, Elsevier, vol. 158(C).
    5. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Seema Mehra Parihar & Vijendra Kumar Pandey & Anshu & Karuna Shree & Khusro Moin & Mohammed Baber Ali & Kanchana Narasimhan & Jeetesh Rai & Azka Kamil, 2022. "Land Use Dynamics and Impact on Regional Climate Post-Tehri Dam in the Bhilangana Basin, Garhwal Himalaya," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Werlang & Gabriel Cunha & João Bastos & Juliana Serra & Bruno Barbosa & Luiz Barroso, 2021. "Reliability Metrics for Generation Planning and the Role of Regulation in the Energy Transition: Case Studies of Brazil and Mexico," Energies, MDPI, vol. 14(21), pages 1-27, November.
    2. Sánchez, A.S. & Torres, E.A. & Kalid, R.A., 2015. "Renewable energy generation for the rural electrification of isolated communities in the Amazon Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 278-290.
    3. Caterina Conigliani & Martina Iorio & Salvatore Monni, 2023. "Water, energy and human development in the Brazilian Amazon: a municipal Human Development Index adjusted for accesses," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 10(3), pages 318-328, March.
    4. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    5. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    6. Qunpeng Fan, 2022. "Management and Policy Modeling of the Market Using Artificial Intelligence," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    7. Mohammad Nur Nobi, 2021. "Cost-Benefit Analysis of Kaptai Dam in Rangamati District, Chittagong, Bangladesh," Papers 2109.05419, arXiv.org, revised Nov 2022.
    8. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    9. Cláudio Albuquerque Frate & Christian Brannstrom, 2019. "How Do Stakeholders Perceive Barriers to Large-Scale Wind Power Diffusion? A Q-Method Case Study from Ceará State, Brazil," Energies, MDPI, vol. 12(11), pages 1-14, May.
    10. Frate, Cláudio Albuquerque & Brannstrom, Christian & de Morais, Marcus Vinícius Girão & Caldeira-Pires, Armando de Azevedo, 2019. "Procedural and distributive justice inform subjectivity regarding wind power: A case from Rio Grande do Norte, Brazil," Energy Policy, Elsevier, vol. 132(C), pages 185-195.
    11. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    12. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
    13. Vicente Fruet & Daniel Campos & Lorena Caridad, 2023. "Itaipu Binational Dam: A Quantitative Analysis of the Economic and Social Impacts in Paraguay. Successful or not?," SAGE Open, , vol. 13(4), pages 21582440231, December.
    14. Randell, Heather, 2016. "The short-term impacts of development-induced displacement on wealth and subjective well-being in the Brazilian Amazon," World Development, Elsevier, vol. 87(C), pages 385-400.
    15. Diniz, Bruno Andrade & Szklo, Alexandre & Tolmasquim, Maurício T. & Schaeffer, Roberto, 2023. "Delays in the construction of power plants from electricity auctions in Brazil," Energy Policy, Elsevier, vol. 175(C).
    16. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    17. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    18. Luiz Moreira Coelho Junior & Edvaldo Pereira Santos Júnior, 2022. "Space-Time Conglomerates Analysis of the Forest-Based Power Plants in Brazil (2000–2019)," Energies, MDPI, vol. 15(11), pages 1-12, June.
    19. Kamal Abdelrahim Mohamed Shuka & Wang Ke & Mohammad Sohail Nazar & Ghali Abdullahi Abubakar & AmirReza Shahtahamssebi, 2022. "Impact of Hydrological Infrastructure Projects on Land Use/Cover and Socioeconomic Development in Arid Regions—Evidence from the Upper Atbara and Setit Dam Complex, Kassala, Eastern Sudan," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    20. Lee, Chien-Chiang & Hussain, Jafar, 2023. "Energy sustainability under the COVID-19 outbreak: Electricity break-off policy to minimize electricity market crises," Energy Economics, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1630-:d:738811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.