IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p185-d195593.html
   My bibliography  Save this article

The Role of Photovoltaics (PV) in the Present and Future Situation of Suriname

Author

Listed:
  • Amrita Raghoebarsing

    (Department of Electrical Engineering, Faculty of Technology, Anton de Kom University of Suriname, Leysweg 86, P.O. Box 9212, Paramaribo, Suriname
    Department of Design, Production and Management, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands)

  • Angèle Reinders

    (Department of Design, Production and Management, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
    Energy Techology Group, Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), P.O.Box 513, 5600 MB Eindhoven, The Netherlands)

Abstract

The aim of this paper is to give an overview of the energy sector and the current status of photovoltaic (PV) systems in Suriname and to investigate which role PV systems can play in this country’s future energy transition. At this moment, 64% of the power is available from diesel/heavy fuel oil (HFO) gensets while 36% is available from renewables namely hydroelectric power systems and PV systems. Suriname has renewable energy (RE) targets for 2017 and 2022 which already have been achieved by this 36%. However, the RE target of 2027 of 47% must be achieved yet. As there is abundant irradiance available, on an average 1792 kWh/m 2 /year and because several PV systems have already been successfully implemented, PV can play an important role in the energy transition of Suriname. In order to achieve the 2027 target with only PV systems, an additional 110 MWp of installed PV capacity will be required. Governmental and non-governmental institutes have planned PV projects. If these will be executed in the future than annually 0.8 TWh electricity will be produced by PV systems. In order to meet the electricity demand of 2027 fully, 2.2 TWh PV electricity will be required which implies that more PV systems must be implemented in Suriname besides the already scheduled ones.

Suggested Citation

  • Amrita Raghoebarsing & Angèle Reinders, 2019. "The Role of Photovoltaics (PV) in the Present and Future Situation of Suriname," Energies, MDPI, vol. 12(1), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:185-:d:195593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kunaifi & Angèle Reinders, 2018. "Perceived and Reported Reliability of the Electricity Supply at Three Urban Locations in Indonesia," Energies, MDPI, vol. 11(1), pages 1-27, January.
    2. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    3. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    2. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    4. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    5. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    6. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    7. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    9. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    10. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.
    11. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    12. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    13. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    14. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    15. Mohammad Nur Nobi, 2021. "Cost-Benefit Analysis of Kaptai Dam in Rangamati District, Chittagong, Bangladesh," Papers 2109.05419, arXiv.org, revised Nov 2022.
    16. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    17. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    18. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    19. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    20. Kamel, Salah & El-Sattar, Hoda Abd & Vera, David & Jurado, Francisco, 2018. "Bioenergy potential from agriculture residues for energy generation in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 28-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:185-:d:195593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.