IDEAS home Printed from https://ideas.repec.org/a/spr/jecrev/v72y2021i1d10.1007_s42973-020-00057-5.html
   My bibliography  Save this article

Inter-organisational patent opposition network: how companies form adversarial relationships

Author

Listed:
  • Tomomi Kito

    (Waseda University)

  • Nagi Moriya

    (Fuji Xerox Co., Ltd.)

  • Junichi Yamanoi

    (Waseda University)

Abstract

Much of the research on networks using patent data focuses on citations and the collaboration networks of inventors, hence regarding patents as a positive sign of invention. However, patenting is, most importantly, a strategic action used by companies to compete with each other. This study sheds light on inter-organisational adversarial relationships in patenting for the first time. We constructed and analysed the network of companies connected via patent opposition relationships that occurred between 1980 and 2018. A majority of the companies are directly or indirectly connected to each other and hence form the largest connected component. We found that, in the network, many companies disapprove patents in various industrial sectors as well as those owned by foreign companies. The network exhibits heavy-tailed, power-law-like degree distribution, and assortative mixing. We further investigated the dynamics of the formation of this network by conducting a temporal network motif analysis, with patent co-ownership among the companies being considered. By regarding opposition as a negative relationship and patent co-ownership as a positive relationship, we analysed where collaboration may occur in the opposition network and how such positive relationships would interact with negative relationships. The results identified the structurally imbalanced triadic motifs and the temporal patterns of the occurrence of triads formed by a mixture of positive and negative relationships. Our findings suggest that the mechanisms of the emergence of the inter-organisational adversarial relationships may differ from those of other types of negative relationships, hence necessitating further research.

Suggested Citation

  • Tomomi Kito & Nagi Moriya & Junichi Yamanoi, 2021. "Inter-organisational patent opposition network: how companies form adversarial relationships," The Japanese Economic Review, Springer, vol. 72(1), pages 145-166, January.
  • Handle: RePEc:spr:jecrev:v:72:y:2021:i:1:d:10.1007_s42973-020-00057-5
    DOI: 10.1007/s42973-020-00057-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42973-020-00057-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42973-020-00057-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanjouw, Jean O & Schankerman, Mark, 2001. "Characteristics of Patent Litigation: A Window on Competition," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 129-151, Spring.
    2. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    3. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.
    4. Holger Graf, 2011. "Gatekeepers in regional networks of innovators," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 35(1), pages 173-198.
    5. Leonid Kogan & Dimitris Papanikolaou & Amit Seru & Noah Stoffman, 2017. "Technological Innovation, Resource Allocation, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 665-712.
    6. Harhoff, Dietmar & Reitzig, Markus, 2004. "Determinants of opposition against EPO patent grants--the case of biotechnology and pharmaceuticals," International Journal of Industrial Organization, Elsevier, vol. 22(4), pages 443-480, April.
    7. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    8. Grzegorczyk Tomasz & Głowiński Robert, 2020. "Patent management strategies: A review," Journal of Economics and Management, Sciendo, vol. 40(2), pages 36-51, June.
    9. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    10. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    11. Hasan, Iftekhar & Tucci, Christopher L., 2010. "The innovation-economic growth nexus: Global evidence," Research Policy, Elsevier, vol. 39(10), pages 1264-1276, December.
    12. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tawanda Collins Muzamwese, 2024. "Effects of Sustainable Business Networks on the Environmentally Sound Management of Chemicals in Zimbabwe," Circular Economy and Sustainability, Springer, vol. 4(2), pages 1047-1067, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomomi Kito & Nagi Moriya & Junichi Yamanoi, 2020. "Inter-organisational patent opposition network: How companies form adversarial relationships," Papers 2009.04113, arXiv.org.
    2. Capponi, Giovanna & Martinelli, Arianna & Nuvolari, Alessandro, 2022. "Breakthrough innovations and where to find them," Research Policy, Elsevier, vol. 51(1).
    3. Andreas Reinstaller & Peter Reschenhofer, 2017. "Using PageRank in the analysis of technological progress through patents: an illustration for biotechnological inventions," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1407-1438, December.
    4. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    5. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    6. Sterzi, Valerio, 2011. "Academic patent value and knowledge transfer in the UK. Does patent ownership matter?," MPRA Paper 34955, University Library of Munich, Germany.
    7. Nils Omland, 2011. "Valuing Patents through Indicators," Chapters, in: Federico Munari & Raffaele Oriani (ed.), The Economic Valuation of Patents, chapter 7, Edward Elgar Publishing.
    8. Dietmar Harhoff & Georg von Graevenitz & Stefan Wagner, 2016. "Conflict Resolution, Public Goods, and Patent Thickets," Management Science, INFORMS, vol. 62(3), pages 704-721, March.
    9. Bronwyn H. Hall & Grid Thoma & Salvatore Torrisi, 2009. "Financial Patenting in Europe," NBER Working Papers 14714, National Bureau of Economic Research, Inc.
    10. Bronwyn H. Hall, 2010. "The Financing of Innovative Firms," Review of Economics and Institutions, Università di Perugia, vol. 1(1).
    11. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    12. Andrew Eckert & Corinne Langinier, 2014. "A Survey Of The Economics Of Patent Systems And Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 996-1015, December.
    13. Beaudry, Catherine & Schiffauerova, Andrea, 2011. "Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation," European Management Journal, Elsevier, vol. 29(5), pages 362-376.
    14. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    15. Rockett, Katharine, 2010. "Property Rights and Invention," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 315-380, Elsevier.
    16. Harhoff, Dietmar & Reitzig, Markus, 2004. "Determinants of opposition against EPO patent grants--the case of biotechnology and pharmaceuticals," International Journal of Industrial Organization, Elsevier, vol. 22(4), pages 443-480, April.
    17. Darcy, Jacques & Krämer-Eis, Helmut & Guellec, Dominique & Debande, Olivier, 2009. "Financing technology transfer," EIB Papers 10/2009, European Investment Bank, Economics Department.
    18. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    19. Christian Sternitzke, 2009. "The international preliminary examination of patent applications filed under the Patent Cooperation Treaty — a proxy for patent value?," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(2), pages 189-202, February.
    20. Mariani, Manuel Sebastian & Medo, Matúš & Lafond, François, 2019. "Early identification of important patents: Design and validation of citation network metrics," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 644-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecrev:v:72:y:2021:i:1:d:10.1007_s42973-020-00057-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.