IDEAS home Printed from https://ideas.repec.org/a/spr/jecfin/v25y2001i3p276-292.html
   My bibliography  Save this article

Capturing the volatility smile of options on high-tech stocks—A combined GARCH-neural network approach

Author

Listed:
  • Gunter Meissner
  • Noriko Kawano

Abstract

A slight modification of the standard GARCH equation results in a good modeling of historical volatility. Using this generated GARCH volatility together with the inputs: spot price divided by strike, time to maturity, and interest rate, a generated Neural Network results in significantly better pricing performance than the Black Scholes model. A single Neural Network for each individual high-tech stock is able to adapt to the market inherent volatility distortion. A single Network for all tested high-tech stocks also results in significantly better pricing performance than the Black-Scholes model. Copyright Academy of Economics and Finance 2001

Suggested Citation

  • Gunter Meissner & Noriko Kawano, 2001. "Capturing the volatility smile of options on high-tech stocks—A combined GARCH-neural network approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 25(3), pages 276-292, September.
  • Handle: RePEc:spr:jecfin:v:25:y:2001:i:3:p:276-292
    DOI: 10.1007/BF02745889
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02745889
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02745889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    3. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    4. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
    2. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2022. "Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices," Papers 2211.14814, arXiv.org.
    3. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    4. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    5. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    6. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. João A. Bastos, 2023. "Conformal prediction of option prices," Working Papers REM 2023/0304, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    4. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    5. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
    6. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    7. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    8. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    9. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    10. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
    11. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    12. Burak Saltoglu, 2003. "Comparing forecasting ability of parametric and non-parametric methods: an application with Canadian monthly interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 169-176.
    13. Jun Lu & Hiroshi Ohta, 2003. "A data and digital-contracts driven method for pricing complex derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 212-219.
    14. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    15. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    16. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    17. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    18. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    19. Petra Posedel, 2006. "Analysis of the Exchange Rate and Pricing Foreign Currency Options on the Croatian Market: the NGARCH Model as an Alternative to the Black-Scholes Model," Financial Theory and Practice, Institute of Public Finance, vol. 30(4), pages 347-368.
    20. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecfin:v:25:y:2001:i:3:p:276-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.