IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v5y2022i2d10.1007_s42001-022-00176-6.html
   My bibliography  Save this article

From academia to policy makers: a methodology for real-time forecasting of infrequent events

Author

Listed:
  • Alfred Krzywicki

    (UNSW Sydney
    University of Adelaide)

  • David Muchlinski

    (Georgia Institute of Technology)

  • Benjamin E. Goldsmith

    (Australian National University)

  • Arcot Sowmya

    (UNSW Sydney)

Abstract

The field of conflict forecasting has matured greatly over the last decade. Advances in machine learning have allowed researchers to forecast rare political and social events in near real time. Yet the maturity of the field has led to a proliferation of diverse platforms for forecasting, divergent results across forecasts, and an explosion of forecasting methodologies. While the field has done much to establish some baseline results, true, consensual benchmarks against which future forecasts may be evaluated remain elusive, and thus, agreed upon empirical results are still rare. The aim of this work is to address these concerns and provide the field of conflict forecasting with a standardized analysis pipeline to evaluate future forecasts of political violence. We aim to open the black box of the conflict forecasting pipeline and provide empirical evidence on how modeling decisions along all steps of the pipeline affect end results. In this way, we empirically demonstrate best practices that conflict forecasting researchers may utilize in future endeavors. We employ forecasts of targeted mass killings and genocides to support our methodological claims.

Suggested Citation

  • Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
  • Handle: RePEc:spr:jcsosc:v:5:y:2022:i:2:d:10.1007_s42001-022-00176-6
    DOI: 10.1007/s42001-022-00176-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-022-00176-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-022-00176-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles Butcher & Benjamin E. Goldsmith & Sascha Nanlohy & Arcot Sowmya & David Muchlinski, 2020. "Introducing the Targeted Mass Killing Data Set for the Study and Forecasting of Mass Atrocities," Journal of Conflict Resolution, Peace Science Society (International), vol. 64(7-8), pages 1524-1547, August.
    2. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    3. Jack A. Goldstone & Robert H. Bates & David L. Epstein & Ted Robert Gurr & Michael B. Lustik & Monty G. Marshall & Jay Ulfelder & Mark Woodward, 2010. "A Global Model for Forecasting Political Instability," American Journal of Political Science, John Wiley & Sons, vol. 54(1), pages 190-208, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    2. Janus, Thorsten & Riera-Crichton, Daniel, 2015. "Economic shocks, civil war and ethnicity," Journal of Development Economics, Elsevier, vol. 115(C), pages 32-44.
    3. Goldstone, Jack A. (Голдстоун, Джек) & Korotaev, Andrey (Коротаев, Андрей) & Zinkina, Yulia (Зинькина, Юлия), 2015. "Political Demography of the World Economy: Tropical Africa [Политическая Демография Мировой Экономики: Страны Тропической Африки]," Published Papers mn45, Russian Presidential Academy of National Economy and Public Administration.
    4. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    5. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    6. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    7. Andrew P. Owsiak, 2015. "Forecasting conflict management in militarized interstate disputes," Conflict Management and Peace Science, Peace Science Society (International), vol. 32(1), pages 50-75, February.
    8. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    9. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    10. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    12. Hartley, Tilman, 2023. "State crisis theory: A systematization of institutional, socio-ecological, demographicstructural, world-systems, and revolutions research," Working Paper Series 01/2023, Post-Growth Economics Network (PEN).
    13. Rød, Espen Geelmuyden & Gåsste, Tim & Hegre, Håvard, 2024. "A review and comparison of conflict early warning systems," International Journal of Forecasting, Elsevier, vol. 40(1), pages 96-112.
    14. Simplice A. Asongu & Thales P. Yapatake Kossele & Joseph Nnanna, 2021. "Not all that glitters is gold: political stability and trade in Sub-Saharan Africa," Research Africa Network Working Papers 21/005, Research Africa Network (RAN).
    15. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    16. Andreas Mehler, 2009. "Introduction: Power-Sharing in Africa," Africa Spectrum, Institute of African Affairs, GIGA German Institute of Global and Area Studies, Hamburg, vol. 44(3), pages 2-10.
    17. Daniel R Jeske, 2018. "Metrics Used When Evaluating the Performance of Statistical Classifiers," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 7-9, August.
    18. Karen E. Smith, 2015. "Mass Atrocity Prevention: Forever Elusive or Potentially Achievable?," Politics and Governance, Cogitatio Press, vol. 3(3), pages 1-4.
    19. Andrey Korotayev & Ilya Vaskin & Stanislav Bilyuga & Alina Khokhlova & Anastasia Baltach & Eugeny Ivanov & Kira Meshcherina, 2017. "Economic Development and Sociopolitical Destabilization: A Re-Analysis," HSE Working papers WP BRP 46/PS/2017, National Research University Higher School of Economics.
    20. Nicholas J Shallcross & Darryl K Ahner, 2020. "Predictive models of world conflict: accounting for regional and conflict-state differences," The Journal of Defense Modeling and Simulation, , vol. 17(3), pages 243-267, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:5:y:2022:i:2:d:10.1007_s42001-022-00176-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.