IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v45y2023i5d10.1007_s10878-023-01051-4.html
   My bibliography  Save this article

Balanced graph partitioning based on mixed 0-1 linear programming and iteration vertex relocation algorithm

Author

Listed:
  • Zhengxi Yang

    (University of Chinese Academy of Sciences)

  • Zhipeng Jiang

    (University of Chinese Academy of Sciences)

  • Wenguo Yang

    (University of Chinese Academy of Sciences)

  • Suixiang Gao

    (University of Chinese Academy of Sciences)

Abstract

Graph partitioning is a classical NP problem. The goal of graphing partition is to have as few cut edges in the graph as possible. Meanwhile, the capacity limit of the shard should be satisfied. In this paper, a model for graph partitioning is proposed. Then the model is converted into a mixed 0-1 linear programming by introducing variables. In order to solve this model, we select some variables to design the vertex relocation model. This work designs a variable selection strategy according to the effect of vertex relocation on the number of local edges. For purpose of implementing graph partitioning on large scale graph, we design an iterative algorithm to solve the model by selecting some variables in each iteration. The algorithm relocates the shard of the vertex according to the solution of the model. In the experiment, the method in this paper is simulated and compared with BLP and its related methods in the different shard sizes on the five social network datasets. The simulation results show that the method of this paper works well. In addition, we compare the effects of different parameter values and variables selection strategies on the partitioning effect.

Suggested Citation

  • Zhengxi Yang & Zhipeng Jiang & Wenguo Yang & Suixiang Gao, 2023. "Balanced graph partitioning based on mixed 0-1 linear programming and iteration vertex relocation algorithm," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-17, July.
  • Handle: RePEc:spr:jcomop:v:45:y:2023:i:5:d:10.1007_s10878-023-01051-4
    DOI: 10.1007/s10878-023-01051-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-023-01051-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-023-01051-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neng Fan & Panos Pardalos, 2010. "Linear and quadratic programming approaches for the general graph partitioning problem," Journal of Global Optimization, Springer, vol. 48(1), pages 57-71, September.
    2. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    3. Kameng Nip & Tianning Shi & Zhenbo Wang, 2022. "Some graph optimization problems with weights satisfying linear constraints," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 200-225, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Recalde & Ramiro Torres & Polo Vaca, 2020. "An exact approach for the multi-constraint graph partitioning problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 289-308, October.
    2. Coşar Gözükırmızı & Metin Demiralp, 2019. "Solving ODEs by Obtaining Purely Second Degree Multinomials via Branch and Bound with Admissible Heuristic," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    3. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    4. Amine Lamine & Mahdi Khemakhem & Brahim Hnich & Habib Chabchoub, 2016. "Solving constrained optimization problems by solution-based decomposition search," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 672-695, October.
    5. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    6. Eduardo Queiroga & Anand Subramanian & Rosa Figueiredo & Yuri Frota, 2021. "Integer programming formulations and efficient local search for relaxed correlation clustering," Journal of Global Optimization, Springer, vol. 81(4), pages 919-966, December.
    7. Drexl, Andreas, 1990. "Scheduling of project networks by job assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 247, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Yi-Feng Hung & Wei-Chih Chen, 2011. "A heterogeneous cooperative parallel search of branch-and-bound method and tabu search algorithm," Journal of Global Optimization, Springer, vol. 51(1), pages 133-148, September.
    9. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    10. Sonia Cafieri & Alberto Costa & Pierre Hansen, 2014. "Reformulation of a model for hierarchical divisive graph modularity maximization," Annals of Operations Research, Springer, vol. 222(1), pages 213-226, November.
    11. Thomas L. Morin & Roy E. Marsten, 1974. "Brand-and-Bound Strategies for Dynamic Programming," Discussion Papers 106, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    13. Neng Fan & Panos M. Pardalos, 2012. "Multi-way clustering and biclustering by the Ratio cut and Normalized cut in graphs," Journal of Combinatorial Optimization, Springer, vol. 23(2), pages 224-251, February.
    14. Hu, Xiaoxuan & Zhu, Waiming & Ma, Huawei & An, Bo & Zhi, Yanling & Wu, Yi, 2021. "Orientational variable-length strip covering problem: A branch-and-price-based algorithm," European Journal of Operational Research, Elsevier, vol. 289(1), pages 254-269.
    15. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    16. Chao Zhang & Zihao Zhang & Mihai Cucuringu & Stefan Zohren, 2021. "A Universal End-to-End Approach to Portfolio Optimization via Deep Learning," Papers 2111.09170, arXiv.org.
    17. Dusseault, Bernard & Pasquier, Philippe, 2021. "Usage of the net present value-at-risk to design ground-coupled heat pump systems under uncertain scenarios," Renewable Energy, Elsevier, vol. 173(C), pages 953-971.
    18. Juan F. R. Herrera & José M. G. Salmerón & Eligius M. T. Hendrix & Rafael Asenjo & Leocadio G. Casado, 2017. "On parallel Branch and Bound frameworks for Global Optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 547-560, November.
    19. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues Part II — Processing of portfolio planning models with discrete constraints," Journal of Asset Management, Palgrave Macmillan, vol. 8(4), pages 249-258, November.
    20. Angelika Wiegele & Shudian Zhao, 2022. "SDP-based bounds for graph partition via extended ADMM," Computational Optimization and Applications, Springer, vol. 82(1), pages 251-291, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:5:d:10.1007_s10878-023-01051-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.