IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i3p1069-1076.html
   My bibliography  Save this article

An optimization approach to epistasis detection

Author

Listed:
  • Wang, Lizhi
  • Nikouei Mehr, Maryam

Abstract

Epistasis refers to the phenomenon where the interaction of multiple genes affects a certain phenotype in addition to their individual additive effects. Similar epistatic effects are also ubiquitous in other application areas, such as gene-environment interactions, where a certain effect is triggered only when a particular combination of genes and environmental components is present. Epistasis detection has been recognized as a major challenge in the field of genetics. Previously proposed methods either focused on finding two-gene interactions using brute force enumeration or resorted to heuristic algorithms to search only a subset of the solution space. Herein we present an optimization approach that can identify the number of explanatory variables responsible for the epistasis as well as the exact combination of these variables. Results from simulation experiments using a soybean data set suggested that the proposed approach had a 95.5% chance of correctly detecting second-order to fifth-order epistases, which was a significant improvement over two alternative approaches in the literature.

Suggested Citation

  • Wang, Lizhi & Nikouei Mehr, Maryam, 2019. "An optimization approach to epistasis detection," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1069-1076.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:1069-1076
    DOI: 10.1016/j.ejor.2018.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    2. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    3. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JS Armstrong & Fred Collopy, 2004. "Causal Forces: Structuring Knowledge for Time-series Extrapolation," General Economics and Teaching 0412003, University Library of Munich, Germany.
    2. Fiordaliso, Antonio, 1998. "A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems," International Journal of Forecasting, Elsevier, vol. 14(3), pages 367-379, September.
    3. Lindh, Thomas & Malmberg, Bo, 2007. "Demographically based global income forecasts up to the year 2050," International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
    4. Madden, Gary & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
    5. Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007. "Does age structure forecast economic growth?," International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.
    6. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    7. Coşar Gözükırmızı & Metin Demiralp, 2019. "Solving ODEs by Obtaining Purely Second Degree Multinomials via Branch and Bound with Admissible Heuristic," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    8. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    9. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    10. Kumar, V. & Sunder, Sarang & Sharma, Amalesh, 2015. "Leveraging Distribution to Maximize Firm Performance in Emerging Markets," Journal of Retailing, Elsevier, vol. 91(4), pages 627-643.
    11. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
    12. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    13. Ekart, Aniko & Nemeth, S. Z., 2005. "Stability analysis of tree structured decision functions," European Journal of Operational Research, Elsevier, vol. 160(3), pages 676-695, February.
    14. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    15. Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
    16. Ariana Chang & Tian‐Shyug Lee & Hsiu‐Mei Lee, 2024. "Applying sustainable development goals in financial forecasting using machine learning techniques," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 2277-2289, May.
    17. Ivo Blohm & Christoph Riedl & Johann Fuller & Orhan Koroglu & Jan Marco Leimeister & Helmut Krcmar, 2012. "The Effects of Prediction Market Design and Price Elasticity on Trading Performance of Users: An Experimental Analysis," Papers 1204.3457, arXiv.org.
    18. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    20. Rosato, Paolo & Stellin, Giuseppe, 1995. "MULTI CRITERIA ANALYSIS IN FARM MANAGEMENT FOLLOWING THE COMMON AGRICULTURAL POLICY REFORM: AN APPLICATION OF MULTI-OBJECTIVE INTEGER LINEAR PROGRAMMING; Proceedings of the 4th Minnesota Padova Confer," Working Papers 14414, University of Minnesota, Center for International Food and Agricultural Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:1069-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.