IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v5y2008i1p67-115.html
   My bibliography  Save this article

Evaluación y clasificación de las técnicas utilizadas por las organizaciones, en las últimas décadas, para seleccionar proyectos = Evaluation and classification of the techniques used by organizations in the last decades to select projects

Author

Listed:
  • Fernández Carazo, Ana

    (Department of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide)

  • Gómez Núñez, Trinidad

    (Departamento de Economía Aplicada (Matemáticas). Universidad de Málaga)

  • Guerrero Casas, Flor M.

    (Department of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide)

  • Caballero Fernández, Rafael

    (Departamento de Economía Aplicada (Matemáticas). Universidad de Málaga)

Abstract

La metodología empleada por las organizaciones empresariales para distribuir su presupuesto y seleccionar qué proyectos, entre todos los posibles candidatos, deben ser ejecutados para cubrir sus necesidades ha evolucionado mucho desde que dichas organizaciones empezaron a apoyar sus decisiones de selección en algún modelo matemático. El propósito de este trabajo es realizar un análisis descriptivo y comparativo de las diferentes técnicas empleadas a lo largo del tiempo, incorporando un pequeño ejemplo que clarifique su funcionamiento y poniendo de manifiesto tanto sus ventajas como sus inconvenientes. En alguna medida, estos inconvenientes fueron motivando su evolución hacia técnicas cada vez m´as complejas y completas hasta llegar a nuestros días. Nuestro estudio ha permitido observar, por un lado, que la evolución de las organizaciones ha llevado a que cambie sustancialmente el problema de selección, pasando de seleccionarse proyectos a seleccionarse y planificar carteras de proyectos y, por otro lado, que el problema aún no está solucionado, ya que es necesario lograr un modelo global que resuelva cualquier problema de selección y planificación temporal de cartera de proyectos. = The methodology used by business organizations to distribute their budget and select which projects –among all potential candidates– must be carried out to satisfy their needs has changed considerably since the organizations started to support their selection decisions in a mathematical model. The purpose of this paper is to provide a descriptive and comparative analysis of the different techniques used over time; we also present a small example to clarify their function, and thereby we show both its advantages and disadvantages. These drawbacks were the principal cause of their evolution towards more completed and sophisticated techniques. This study highlights two aspects: first, the evolution of the organizations has changed the problem of selection from project selection to portfolio selection and scheduling, and secondly, the problem is not solved yet, and we need a global model to resolve whatever problem of project portfolio scheduling and selection.

Suggested Citation

  • Fernández Carazo, Ana & Gómez Núñez, Trinidad & Guerrero Casas, Flor M. & Caballero Fernández, Rafael, 2008. "Evaluación y clasificación de las técnicas utilizadas por las organizaciones, en las últimas décadas, para seleccionar proyectos = Evaluation and classification of the techniques used by organizations," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 5(1), pages 67-115, June.
  • Handle: RePEc:pab:rmcpee:v:5:y:2008:i:1:p:67-115
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/art20.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/art20.txt
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James H. Lorie & Leonard J. Savage, 1955. "Three Problems in Rationing Capital," The Journal of Business, University of Chicago Press, vol. 28, pages 229-229.
    2. Norman Baker & James Freeland, 1975. "Recent Advances in R&D Benefit Measurement and Project Selection Methods," Management Science, INFORMS, vol. 21(10), pages 1164-1175, June.
    3. Hartmann, Marcus & Hassan, Ali, 2006. "Application of real options analysis for pharmaceutical R&D project valuation--Empirical results from a survey," Research Policy, Elsevier, vol. 35(3), pages 343-354, April.
    4. Sidney W. Hess, 1993. "Swinging on the Branch of a Tree: Project Selection Applications," Interfaces, INFORMS, vol. 23(6), pages 5-12, December.
    5. G. Mavrotas & D. Diakoulaki & P. Capros, 2003. "Combined MCDA–IP Approach for Project Selection in the Electricity Market," Annals of Operations Research, Springer, vol. 120(1), pages 159-170, April.
    6. Mavrotas, G. & Diakoulaki, D. & Caloghirou, Y., 2006. "Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming," European Journal of Operational Research, Elsevier, vol. 171(1), pages 296-308, May.
    7. Heidenberger, Kurt, 1996. "Dynamic project selection and funding under risk: A decision tree based MILP approach," European Journal of Operational Research, Elsevier, vol. 95(2), pages 284-298, December.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Cho, Keun-Tae & Kwon, Cheol-Shin, 2004. "Hierarchies with dependence of technological alternatives: A cross-impact hierarchy process," European Journal of Operational Research, Elsevier, vol. 156(2), pages 420-432, July.
    10. H. Martin Weingartner, 1966. "Capital Budgeting of Interrelated Projects: Survey and Synthesis," Management Science, INFORMS, vol. 12(7), pages 485-516, March.
    11. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    12. Matthew J. Liberatore & George J. Titus, 1983. "The Practice of Management Science in R&D Project Management," Management Science, INFORMS, vol. 29(8), pages 962-974, August.
    13. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    14. Eilat, Harel & Golany, Boaz & Shtub, Avraham, 2006. "Constructing and evaluating balanced portfolios of R&D projects with interactions: A DEA based methodology," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1018-1039, August.
    15. G. Edward Fox & Norman R. Baker & John L. Bryant, 1984. "Economic Models for R and D Project Selection in the Presence of Project Interactions," Management Science, INFORMS, vol. 30(7), pages 890-902, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eilat, Harel & Golany, Boaz & Shtub, Avraham, 2006. "Constructing and evaluating balanced portfolios of R&D projects with interactions: A DEA based methodology," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1018-1039, August.
    2. Christian Meier & Dennis Kundisch & Jochen Willeke, 2017. "Is it Worth the Effort?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(2), pages 81-95, April.
    3. Jade Herbots & Willy Herroelen & Roel Leus, 2007. "Dynamic order acceptance and capacity planning on a single bottleneck resource," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 874-889, December.
    4. Santhanam, Radhika & Kyparisis, George J., 1996. "A decision model for interdependent information system project selection," European Journal of Operational Research, Elsevier, vol. 89(2), pages 380-399, March.
    5. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    6. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    7. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    8. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    9. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    10. Tobin, Roger L., 1999. "A fast interactive solution method for large capital expenditure selection problems," European Journal of Operational Research, Elsevier, vol. 116(1), pages 1-15, July.
    11. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    12. Roberto Cervelló Royo & Fernando García García & Francisco Guijarro-Martínez & Ismael Moya-Clemente, 2011. "Housing Ranking: a model of equilibrium between buyers and sellers expectations," ERSA conference papers ersa11p314, European Regional Science Association.
    13. Tommaso Agasisti & Giuseppe Munda, 2017. "Efficiency of investment in compulsory education: An Overview of Methodological Approaches," JRC Research Reports JRC106681, Joint Research Centre.
    14. Ho, Dong-huyn & Lööf, Hans, 2009. "Creating Innovations, Productivity and Growth - the efficiency of Icelandic firms," Working Paper Series in Economics and Institutions of Innovation 162, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    15. Oh, Dong-Hyun & Lööf, Hans & Heshmati, Almas, 2009. "The Icelandic Economy: a victim of the financial crisis or simply inefficient?," Working Paper Series in Economics and Institutions of Innovation 199, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    16. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    17. Shabani, Amir & Visani, Franco & Barbieri, Paolo & Dullaert, Wout & Vigo, Daniele, 2019. "Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights," Omega, Elsevier, vol. 87(C), pages 57-70.
    18. A. Nureize & J. Watada & S. Wang, 2014. "Fuzzy random regression based multi-attribute evaluation and its application to oil palm fruit grading," Annals of Operations Research, Springer, vol. 219(1), pages 299-315, August.
    19. repec:cor:louvrp:-2393 is not listed on IDEAS
    20. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    21. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.

    More about this item

    Keywords

    cartera de proyectos; selección de proyectos; técnicas de clasificación. = portfolio; project selection; classification techniques.;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:5:y:2008:i:1:p:67-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.