Determining the edge metric dimension of the generalized Petersen graph P(n, 3)
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-021-00780-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Amir Daneshgar & Meysam Madani, 2017. "On the odd girth and the circular chromatic number of generalized Petersen graphs," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 897-923, April.
- Kelenc, Aleksander & Kuziak, Dorota & Taranenko, Andrej & G. Yero, Ismael, 2017. "Mixed metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 429-438.
- Yang, Zixuan & Wu, Baoyindureng, 2018. "Strong edge chromatic index of the generalized Petersen graphs," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 431-441.
- Guangjun Xu & Liying Kang, 2011. "On the power domination number of the generalized Petersen graphs," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 282-291, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Enqiang Zhu & Shaoxiang Peng & Chanjuan Liu, 2022. "Identifying the Exact Value of the Metric Dimension and Edge Dimension of Unicyclic Graphs," Mathematics, MDPI, vol. 10(19), pages 1-14, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ou Sun & Neng Fan, 2019. "Solving the multistage PMU placement problem by integer programming and equivalent network design model," Journal of Global Optimization, Springer, vol. 74(3), pages 477-493, July.
- Lily Chen & Shumei Chen & Ren Zhao & Xiangqian Zhou, 2020. "The strong chromatic index of graphs with edge weight eight," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 227-233, July.
- Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
- Sedlar, Jelena & Škrekovski, Riste, 2022. "Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two," Applied Mathematics and Computation, Elsevier, vol. 427(C).
- Chung-Shou Liao, 2016. "Power domination with bounded time constraints," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 725-742, February.
- Nie, Kairui & Xu, Kexiang, 2023. "Mixed metric dimension of some graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
- Sakander Hayat & Asad Khan & Yubin Zhong, 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
- Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
- Sedlar, Jelena & Škrekovski, Riste, 2021. "Extremal mixed metric dimension with respect to the cyclomatic number," Applied Mathematics and Computation, Elsevier, vol. 404(C).
- Juan Wang & Lianying Miao & Yunlong Liu, 2019. "Characterization of n -Vertex Graphs of Metric Dimension n − 3 by Metric Matrix," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
- Ming Chen & Lianying Miao & Shan Zhou, 2020. "Strong Edge Coloring of Generalized Petersen Graphs," Mathematics, MDPI, vol. 8(8), pages 1-12, August.
- Chao Wang & Lei Chen & Changhong Lu, 2016. "$$k$$ k -Power domination in block graphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 865-873, February.
- Asad Khan & Ghulam Haidar & Naeem Abbas & Murad Ul Islam Khan & Azmat Ullah Khan Niazi & Asad Ul Islam Khan, 2023. "Metric Dimensions of Bicyclic Graphs," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
- Dorota Kuziak, 2020. "The Strong Resolving Graph and the Strong Metric Dimension of Cactus Graphs," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
- Rashad Ismail & Asim Nadeem & Kamran Azhar, 2024. "Local Metric Resolvability of Generalized Petersen Graphs," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
More about this item
Keywords
Generalized Petersen graph; Metric dimension; Resolving set; Floyd-Warshall algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:2:d:10.1007_s10878-021-00780-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.