IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v404y2021ics0096300321003283.html
   My bibliography  Save this article

Extremal mixed metric dimension with respect to the cyclomatic number

Author

Listed:
  • Sedlar, Jelena
  • Škrekovski, Riste

Abstract

In a graph G, the cardinality of the smallest ordered set of vertices that distinguishes every element of V(G)∪E(G) is called the mixed metric dimension of G, and it is denoted by mdim(G). In [12] it was conjectured that every graph G with cyclomatic number c(G) satisfies mdim(G)≤L1(G)+2c(G) where L1(G) is the number of leaves in G. It is already proven that the equality holds for all trees and more generally for graphs with edge-disjoint cycles in which every cycle has precisely one vertex of degree ≥3. In this paper we determine that for every Θ-graph G, the mixed metric dimension mdim(G) equals 3 or 4, with 4 being attained if and only if G is a balanced Θ-graph. Thus, for balanced Θ-graphs the above inequality is also tight. We conclude the paper by further conjecturing that there are no other graphs, besides the ones mentioned here, for which the equality mdim(G)=L1(G)+2c(G) holds.

Suggested Citation

  • Sedlar, Jelena & Škrekovski, Riste, 2021. "Extremal mixed metric dimension with respect to the cyclomatic number," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  • Handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003283
    DOI: 10.1016/j.amc.2021.126238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. András Sebő & Eric Tannier, 2004. "On Metric Generators of Graphs," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 383-393, May.
    2. Knor, Martin & Majstorović, Snježana & Masa Toshi, Aoden Teo & Škrekovski, Riste & Yero, Ismael G., 2021. "Graphs with the edge metric dimension smaller than the metric dimension," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Yuezhong Zhang & Suogang Gao, 2020. "On the edge metric dimension of convex polytopes and its related graphs," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 334-350, February.
    4. Kelenc, Aleksander & Kuziak, Dorota & Taranenko, Andrej & G. Yero, Ismael, 2017. "Mixed metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 429-438.
    5. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    2. Asad Khan & Ghulam Haidar & Naeem Abbas & Murad Ul Islam Khan & Azmat Ullah Khan Niazi & Asad Ul Islam Khan, 2023. "Metric Dimensions of Bicyclic Graphs," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    3. Nie, Kairui & Xu, Kexiang, 2023. "Mixed metric dimension of some graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Sakander Hayat & Asad Khan & Yubin Zhong, 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    5. Sedlar, Jelena & Škrekovski, Riste, 2022. "Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Sakander Hayat & Asad Khan & Yubin Zhong, 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    3. Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    4. Sedlar, Jelena & Škrekovski, Riste, 2022. "Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    5. Knor, Martin & Majstorović, Snježana & Masa Toshi, Aoden Teo & Škrekovski, Riste & Yero, Ismael G., 2021. "Graphs with the edge metric dimension smaller than the metric dimension," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    6. Juan Wang & Lianying Miao & Yunlong Liu, 2019. "Characterization of n -Vertex Graphs of Metric Dimension n − 3 by Metric Matrix," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
    7. Rashad Ismail & Asim Nadeem & Kamran Azhar, 2024. "Local Metric Resolvability of Generalized Petersen Graphs," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    8. Ali N. A. Koam & Ali Ahmad & Muhammad Ibrahim & Muhammad Azeem, 2021. "Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    9. Nie, Kairui & Xu, Kexiang, 2023. "Mixed metric dimension of some graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    10. Asad Khan & Ghulam Haidar & Naeem Abbas & Murad Ul Islam Khan & Azmat Ullah Khan Niazi & Asad Ul Islam Khan, 2023. "Metric Dimensions of Bicyclic Graphs," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    11. Enqiang Zhu & Shaoxiang Peng & Chanjuan Liu, 2022. "Identifying the Exact Value of the Metric Dimension and Edge Dimension of Unicyclic Graphs," Mathematics, MDPI, vol. 10(19), pages 1-14, September.
    12. Ismael González Yero, 2020. "The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    13. Muhammad Azeem & Muhammad Kamran Jamil & Yilun Shang, 2023. "Notes on the Localization of Generalized Hexagonal Cellular Networks," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    14. Dorota Kuziak, 2020. "The Strong Resolving Graph and the Strong Metric Dimension of Cactus Graphs," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    15. Shahid Imran & Muhammad Kamran Siddiqui & Muhammad Imran & Muhammad Hussain, 2018. "On Metric Dimensions of Symmetric Graphs Obtained by Rooted Product," Mathematics, MDPI, vol. 6(10), pages 1-16, October.
    16. Michael Hallaway & Cong X. Kang & Eunjeong Yi, 2014. "On metric dimension of permutation graphs," Journal of Combinatorial Optimization, Springer, vol. 28(4), pages 814-826, November.
    17. David G. L. Wang & Monica M. Y. Wang & Shiqiang Zhang, 2022. "Determining the edge metric dimension of the generalized Petersen graph P(n, 3)," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 460-496, March.
    18. González, Antonio & Hernando, Carmen & Mora, Mercè, 2018. "Metric-locating-dominating sets of graphs for constructing related subsets of vertices," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 449-456.
    19. Hassan Raza, 2021. "Computing Open Locating-Dominating Number of Some Rotationally-Symmetric Graphs," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
    20. Mladenović, Nenad & Kratica, Jozef & Kovačević-Vujčić, Vera & Čangalović, Mirjana, 2012. "Variable neighborhood search for metric dimension and minimal doubly resolving set problems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 328-337.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.