$$k$$ k -Power domination in block graphs
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-014-9795-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ashkan Aazami, 2010. "Domination in graphs with bounded propagation: algorithms, formulations and hardness results," Journal of Combinatorial Optimization, Springer, vol. 19(4), pages 429-456, May.
- Lei Chen & Changhong Lu & Zhenbing Zeng, 2010. "Labelling algorithms for paired-domination problems in block and interval graphs," Journal of Combinatorial Optimization, Springer, vol. 19(4), pages 457-470, May.
- Guangjun Xu & Liying Kang, 2011. "On the power domination number of the generalized Petersen graphs," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 282-291, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chung-Shou Liao, 2016. "Power domination with bounded time constraints," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 725-742, February.
- Ou Sun & Neng Fan, 2019. "Solving the multistage PMU placement problem by integer programming and equivalent network design model," Journal of Global Optimization, Springer, vol. 74(3), pages 477-493, July.
- Boris Brimkov & Derek Mikesell & Logan Smith, 2019. "Connected power domination in graphs," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 292-315, July.
- Changhong Lu & Qingjie Ye & Chengru Zhu, 2022. "Algorithmic aspect on the minimum (weighted) doubly resolving set problem of graphs," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 2029-2039, October.
- D. Pradhan & Anupriya Jha, 2018. "On computing a minimum secure dominating set in block graphs," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 613-631, February.
- Boris Brimkov & Derek Mikesell & Illya V. Hicks, 2021. "Improved Computational Approaches and Heuristics for Zero Forcing," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1384-1399, October.
- Changhong Lu & Qingjie Ye & Chengru Zhu, 0. "Algorithmic aspect on the minimum (weighted) doubly resolving set problem of graphs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-11.
- Ching-Chi Lin & Cheng-Yu Hsieh & Ta-Yu Mu, 2022. "A linear-time algorithm for weighted paired-domination on block graphs," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 269-286, August.
- David G. L. Wang & Monica M. Y. Wang & Shiqiang Zhang, 2022. "Determining the edge metric dimension of the generalized Petersen graph P(n, 3)," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 460-496, March.
- Prosenjit Bose & Valentin Gledel & Claire Pennarun & Sander Verdonschot, 2020. "Power domination on triangular grids with triangular and hexagonal shape," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 482-500, August.
- Eduardo Álvarez-Miranda & Markus Sinnl, 2020. "A branch-and-cut algorithm for the maximum covering cycle problem," Annals of Operations Research, Springer, vol. 284(2), pages 487-499, January.
- Brimkov, Boris & Fast, Caleb C. & Hicks, Illya V., 2019. "Computational approaches for zero forcing and related problems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 889-903.
- Yancai Zhao & Erfang Shan, 2016. "An efficient algorithm for distance total domination in block graphs," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 372-381, January.
- Hao Chen & Zihan Lei & Tian Liu & Ziyang Tang & Chaoyi Wang & Ke Xu, 2016. "Complexity of domination, hamiltonicity and treewidth for tree convex bipartite graphs," Journal of Combinatorial Optimization, Springer, vol. 32(1), pages 95-110, July.
- Liao, Chung-Shou & Hsieh, Tsung-Jung & Guo, Xian-Chang & Liu, Jian-Hong & Chu, Chia-Chi, 2015. "Hybrid search for the optimal PMU placement problem on a power grid," European Journal of Operational Research, Elsevier, vol. 243(3), pages 985-994.
- Daniela Ferrero & Leslie Hogben & Franklin H. J. Kenter & Michael Young, 2017. "Note on power propagation time and lower bounds for the power domination number," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 736-741, October.
- Prosenjit Bose & Valentin Gledel & Claire Pennarun & Sander Verdonschot, 0. "Power domination on triangular grids with triangular and hexagonal shape," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
More about this item
Keywords
Domination; Power domination; Electrical network monitoring; Block graphs;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:31:y:2016:i:2:d:10.1007_s10878-014-9795-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.