IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v314y2017icp429-438.html
   My bibliography  Save this article

Mixed metric dimension of graphs

Author

Listed:
  • Kelenc, Aleksander
  • Kuziak, Dorota
  • Taranenko, Andrej
  • G. Yero, Ismael

Abstract

Let G=(V,E) be a connected graph. A vertex w ∈ V distinguishes two elements (vertices or edges) x, y ∈ E ∪ V if dG(w, x) ≠ dG(w, y). A set S of vertices in a connected graph G is a mixed metric generator for G if every two distinct elements (vertices or edges) of G are distinguished by some vertex of S. The smallest cardinality of a mixed metric generator for G is called the mixed metric dimension and is denoted by dimm(G). In this paper we consider the structure of mixed metric generators and characterize graphs for which the mixed metric dimension equals the trivial lower and upper bounds. We also give results about the mixed metric dimension of some families of graphs and present an upper bound with respect to the girth of a graph. Finally, we prove that the problem of determining the mixed metric dimension of a graph is NP-hard in the general case.

Suggested Citation

  • Kelenc, Aleksander & Kuziak, Dorota & Taranenko, Andrej & G. Yero, Ismael, 2017. "Mixed metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 429-438.
  • Handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:429-438
    DOI: 10.1016/j.amc.2017.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317304782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yero, Ismael G. & Estrada-Moreno, Alejandro & Rodríguez-Velázquez, Juan A., 2017. "Computing the k-metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 300(C), pages 60-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    2. Asad Khan & Ghulam Haidar & Naeem Abbas & Murad Ul Islam Khan & Azmat Ullah Khan Niazi & Asad Ul Islam Khan, 2023. "Metric Dimensions of Bicyclic Graphs," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    3. Dorota Kuziak, 2020. "The Strong Resolving Graph and the Strong Metric Dimension of Cactus Graphs," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    4. Nie, Kairui & Xu, Kexiang, 2023. "Mixed metric dimension of some graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    5. Sedlar, Jelena & Škrekovski, Riste, 2021. "Extremal mixed metric dimension with respect to the cyclomatic number," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    6. Juan Wang & Lianying Miao & Yunlong Liu, 2019. "Characterization of n -Vertex Graphs of Metric Dimension n − 3 by Metric Matrix," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
    7. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    8. David G. L. Wang & Monica M. Y. Wang & Shiqiang Zhang, 2022. "Determining the edge metric dimension of the generalized Petersen graph P(n, 3)," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 460-496, March.
    9. Sakander Hayat & Asad Khan & Yubin Zhong, 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    10. Rashad Ismail & Asim Nadeem & Kamran Azhar, 2024. "Local Metric Resolvability of Generalized Petersen Graphs," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    11. Sedlar, Jelena & Škrekovski, Riste, 2022. "Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Estrada-Moreno, 2021. "The k -Metric Dimension of a Unicyclic Graph," Mathematics, MDPI, vol. 9(21), pages 1-14, November.
    2. Klavžar, Sandi & Rahbarnia, Freydoon & Tavakoli, Mostafa, 2021. "Some binary products and integer linear programming for k-metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:429-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.