IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v41y2021i1d10.1007_s10878-020-00672-3.html
   My bibliography  Save this article

Non-monotone submodular function maximization under k-system constraint

Author

Listed:
  • Majun Shi

    (Xi’an Jiaotong University)

  • Zishen Yang

    (Xi’an Jiaotong University)

  • Donghyun Kim

    (Georgia State University)

  • Wei Wang

    (Xi’an Jiaotong University)

Abstract

The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under k-matroid constraint to k-system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to k-system constraint (which generalizes the k-matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a $$\frac{1}{2k+3+1/k}$$ 1 2 k + 3 + 1 / k -approximation ratio with running time of O(nmk) (where m is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects.

Suggested Citation

  • Majun Shi & Zishen Yang & Donghyun Kim & Wei Wang, 2021. "Non-monotone submodular function maximization under k-system constraint," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 128-142, January.
  • Handle: RePEc:spr:jcomop:v:41:y:2021:i:1:d:10.1007_s10878-020-00672-3
    DOI: 10.1007/s10878-020-00672-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00672-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00672-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    2. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    3. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    4. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    5. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    6. repec:dgr:rugsom:99a17 is not listed on IDEAS
    7. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    8. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.
    9. Shengminjie Chen & Donglei Du & Wenguo Yang & Suixiang Gao, 2024. "Maximizing stochastic set function under a matroid constraint from decomposition," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-21, August.
    10. Zhenning Zhang & Bin Liu & Yishui Wang & Dachuan Xu & Dongmei Zhang, 2022. "Maximizing a monotone non-submodular function under a knapsack constraint," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1125-1148, July.
    11. Zhenning Zhang & Donglei Du & Yanjun Jiang & Chenchen Wu, 2021. "Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint," Journal of Global Optimization, Springer, vol. 80(3), pages 595-616, July.
    12. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    13. Yingfei Wang & Inbal Yahav & Balaji Padmanabhan, 2024. "Smart Testing with Vaccination: A Bandit Algorithm for Active Sampling for Managing COVID-19," Information Systems Research, INFORMS, vol. 35(1), pages 120-144, March.
    14. Chenggang Wang & Zengfu Wang & Xiong Xu & Yuhang Hao, 2021. "A balanced sensor scheduling for multitarget localization in a distributed multiple-input multiple-output radar network," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
    15. Yanzhi Li & Zhicheng Liu & Chuchu Xu & Ping Li & Xiaoyan Zhang & Hong Chang, 2023. "Two-stage submodular maximization under curvature," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-16, March.
    16. Simon Bruggmann & Rico Zenklusen, 2019. "Submodular Maximization Through the Lens of Linear Programming," Management Science, INFORMS, vol. 44(4), pages 1221-1244, November.
    17. Xiaojuan Zhang & Qian Liu & Min Li & Yang Zhou, 2022. "Fast algorithms for supermodular and non-supermodular minimization via bi-criteria strategy," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3549-3574, December.
    18. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    19. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    20. Shaojie Tang & Jing Yuan, 2023. "Beyond submodularity: a unified framework of randomized set selection with group fairness constraints," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-22, May.
    21. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 2018. "A local search approximation algorithm for the uniform capacitated k-facility location problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 409-423, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:41:y:2021:i:1:d:10.1007_s10878-020-00672-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.