IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v41y2021i1d10.1007_s10878-020-00664-3.html
   My bibliography  Save this article

Top-k overlapping densest subgraphs: approximation algorithms and computational complexity

Author

Listed:
  • Riccardo Dondi

    (Università degli Studi di Bergamo)

  • Mohammad Mehdi Hosseinzadeh

    (Università degli Studi di Bergamo)

  • Giancarlo Mauri

    (Università degli Studi di Milano-Bicocca)

  • Italo Zoppis

    (Università degli Studi di Milano-Bicocca)

Abstract

A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put in the problem of finding a single dense subgraph, only recently the focus has been shifted to the problem of finding a set of densest subgraphs. An approach introduced to find possible overlapping subgraphs is the Top-k-Overlapping Densest Subgraphs problem. Given an integer $$k \ge 1$$ k ≥ 1 and a parameter $$\lambda > 0$$ λ > 0 , the goal of this problem is to find a set of k dense subgraphs that may share some vertices. The objective function to be maximized takes into account the density of the subgraphs, the parameter $$\lambda $$ λ and the distance between each pair of subgraphs in the solution. The Top-k-Overlapping Densest Subgraphs problem has been shown to admit a $$\frac{1}{10}$$ 1 10 -factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improve the approximation factor to $$\frac{1}{2}$$ 1 2 , when k is smaller than the number of vertices in the graph, and to $$\frac{2}{3}$$ 2 3 , when k is a constant. For the computational complexity, we show that the problem is NP-hard even when $$k=3$$ k = 3 .

Suggested Citation

  • Riccardo Dondi & Mohammad Mehdi Hosseinzadeh & Giancarlo Mauri & Italo Zoppis, 2021. "Top-k overlapping densest subgraphs: approximation algorithms and computational complexity," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 80-104, January.
  • Handle: RePEc:spr:jcomop:v:41:y:2021:i:1:d:10.1007_s10878-020-00664-3
    DOI: 10.1007/s10878-020-00664-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00664-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00664-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourjolly, Jean-Marie & Laporte, Gilbert & Pesant, Gilles, 2002. "An exact algorithm for the maximum k-club problem in an undirected graph," European Journal of Operational Research, Elsevier, vol. 138(1), pages 21-28, April.
    2. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    2. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    3. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    4. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    5. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    6. Niels Grüttemeier & Philipp Heinrich Keßler & Christian Komusiewicz & Frank Sommer, 2024. "Efficient branch-and-bound algorithms for finding triangle-constrained 2-clubs," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-27, October.
    7. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    8. Alexander Veremyev & Vladimir Boginski & Eduardo Pasiliao, 2015. "Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra," Journal of Global Optimization, Springer, vol. 61(1), pages 109-138, January.
    9. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    10. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    11. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    12. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    13. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    14. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    15. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    16. Shahram Shahinpour & Sergiy Butenko, 2013. "Algorithms for the maximum k-club problem in graphs," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 520-554, October.
    17. Almeida, Maria Teresa & Carvalho, Filipa D., 2014. "An analytical comparison of the LP relaxations of integer models for the k-club problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 489-498.
    18. Grigory Pastukhov & Alexander Veremyev & Vladimir Boginski & Eduardo L. Pasiliao, 2014. "Optimal design and augmentation of strongly attack-tolerant two-hop clusters in directed networks," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 462-486, April.
    19. Bourjolly, Jean-Marie & Laporte, Gilbert & Pesant, Gilles, 2002. "An exact algorithm for the maximum k-club problem in an undirected graph," European Journal of Operational Research, Elsevier, vol. 138(1), pages 21-28, April.
    20. Seiler, A. & Papanagnou, C. & Scarf, P., 2020. "On the relationship between financial performance and position of businesses in supply chain networks," International Journal of Production Economics, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:41:y:2021:i:1:d:10.1007_s10878-020-00664-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.