IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v37y2019i1d10.1007_s10878-017-0218-x.html
   My bibliography  Save this article

Prognostics and health management of life-supporting medical instruments

Author

Listed:
  • Cheng He

    (Shanghai Polytechnic University)

  • Yang Wu

    (Shanghai Polytechnic University)

  • Tong Chen

    (Shanghai General Hospital)

Abstract

In order to deal with the maintenance problems of life-supporting medical instruments, and to improve their utilization, a prognostics and health management (PHM) system is designed. The implementation framework of PHM system is proposed. A experiment platform for critical components of life-supporting medical instruments is built. A fault is injected into the component. The model for critical components of medical instruments is established based on Lagrange method model. Using the reduced particle group to represent the state of the probability density function, the probability of failure in real-time can be calculated by particle filter algorithm. The simulation results match the experimental data. It diagnoses the faults and predicts the remaining useful life. Then appropriate maintenance advice can be given.

Suggested Citation

  • Cheng He & Yang Wu & Tong Chen, 2019. "Prognostics and health management of life-supporting medical instruments," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 183-195, January.
  • Handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0218-x
    DOI: 10.1007/s10878-017-0218-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0218-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0218-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liwei Zhong & Shoucheng Luo & Lidong Wu & Lin Xu & Jinghui Yang & Guochun Tang, 2014. "A two-stage approach for surgery scheduling," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 545-556, April.
    2. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    2. Zhiguo Wang & Lufei Huang & Cici Xiao He, 0. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    3. Beibei Li & Zhihong Zhao & Xuan Shen & Cendi Xue & Liwei Zhong, 2015. "Fitting $$\alpha $$ α $$\beta $$ β -crystalline structure onto electron microscopy based on SO(3) rotation group theory," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 906-919, November.
    4. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    5. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    6. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    7. Siddhartha Chib & Minchul Shin & Fei Tan, 2023. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 69-111, January.
    8. Wei Gao & Wuping Bao & Xin Zhou, 2019. "Analysis of cough detection index based on decision tree and support vector machine," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 375-384, January.
    9. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    10. Yadong Wang & Baoqiang Fan & Jingang Zhai & Wei Xiong, 2019. "Two-machine flowshop scheduling in a physical examination center," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 363-374, January.
    11. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    12. Yang Liu & Zhi-Ping Fan & Yan-Ping Jiang, 2018. "Satisfied surgeon–patient matching: a model-based method," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2871-2891, November.
    13. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    14. Jing Fan & Hui Shi, 0. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-13.
    15. Jian Chang & Lingjuan Zhang, 2019. "Case Mix Index weighted multi-objective optimization of inpatient bed allocation in general hospital," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 1-19, January.
    16. Xi Chen & Liu Zhao & Haiming Liang & Kin Keung Lai, 2019. "Matching patients and healthcare service providers: a novel two-stage method based on knowledge rules and OWA-NSGA-II algorithm," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 221-247, January.
    17. Dacheng Liu & Tao Lu & Xu-Feng Niu & Hulin Wu, 2011. "Mixed-Effects State-Space Models for Analysis of Longitudinal Dynamic Systems," Biometrics, The International Biometric Society, vol. 67(2), pages 476-485, June.
    18. Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
    19. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    20. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0218-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.