IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v37y2019i1d10.1007_s10878-017-0204-3.html
   My bibliography  Save this article

Case Mix Index weighted multi-objective optimization of inpatient bed allocation in general hospital

Author

Listed:
  • Jian Chang

    (The Second Military Medical University)

  • Lingjuan Zhang

    (Changhai Hospital Affiliated to the Second Military Medical University)

Abstract

Inpatient bed, as one of the most critical resources for general hospitals, has to be effectively allocated among different departments to achieve the goal of preferable balance between patient service and resource utilization. To address this issue, studies in the past have been focusing on the development of bed allocation optimization algorithms with the objective of improved patient admission rate or higher bed occupancy rate. But in the context of hierarchical medical system promoted by the medical reform currently ongoing in China, the level of disease severity or treatment difficulty of clinical cases also has to be involved in the evaluation of the hospital performance, especially for the highly ranked national-level general hospitals. Case Mix Index (CMI), as an internationally recognized index which is highly correlated with the level of clinical complexity, is thus introduced to evaluate hospitals uniformly and facilitate straightforward comparison among them. To be aligned with the new requirement for an improved CMI, a multi-objective comprehensive learning particle swarm optimization algorithm is proposed in this paper based on an upgraded queueing model which incorporates CMI as an important weight into the traditional optimization objectives. Experimental results indicate that a higher CMI can be achieved with the new method and meanwhile both patient admission rate and bed occupancy rate with which hospital managers are still concerned will not be much influenced. The method is developed for a tertiary public hospital in Shanghai and can also be applied by hospital managers in other hospitals of the similar scale.

Suggested Citation

  • Jian Chang & Lingjuan Zhang, 2019. "Case Mix Index weighted multi-objective optimization of inpatient bed allocation in general hospital," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 1-19, January.
  • Handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0204-3
    DOI: 10.1007/s10878-017-0204-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0204-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0204-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liwei Zhong & Shoucheng Luo & Lidong Wu & Lin Xu & Jinghui Yang & Guochun Tang, 2014. "A two-stage approach for surgery scheduling," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 545-556, April.
    2. F Gorunescu & S I McClean & P H Millard, 2002. "A queueing model for bed-occupancy management and planning of hospitals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 19-24, January.
    3. Xiaodong Li & Patrick Beullens & Dylan Jones & Mehrdad Tamiz, 2009. "Optimal Bed Allocation in Hospitals," Lecture Notes in Economics and Mathematical Systems, in: Vincent Barichard & Matthias Ehrgott & Xavier Gandibleux & Vincent T'Kindt (ed.), Multiobjective Programming and Goal Programming, pages 253-265, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 2021. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1053-1063, November.
    2. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    3. Qian Li & Wei Zhang, 0. "An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-17.
    4. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 2021. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 677-699, November.
    5. Qian Li & Wei Zhang, 2021. "An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 831-847, November.
    6. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 0. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    7. Zhiguo Wang & Lufei Huang & Cici Xiao He, 0. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-28.
    8. Haiyue Yu & Ting Shen & Liwei Zhong, 2024. "Optimizing hospital bed allocation for coordinated medical efficiency and quality improvement," Journal of Combinatorial Optimization, Springer, vol. 48(4), pages 1-20, November.
    9. Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 0. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beibei Li & Zhihong Zhao & Xuan Shen & Cendi Xue & Liwei Zhong, 2015. "Fitting $$\alpha $$ α $$\beta $$ β -crystalline structure onto electron microscopy based on SO(3) rotation group theory," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 906-919, November.
    2. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    3. Wei Gao & Wuping Bao & Xin Zhou, 2019. "Analysis of cough detection index based on decision tree and support vector machine," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 375-384, January.
    4. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    5. Yadong Wang & Baoqiang Fan & Jingang Zhai & Wei Xiong, 2019. "Two-machine flowshop scheduling in a physical examination center," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 363-374, January.
    6. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2013. "A Markovian queueing model for ambulance offload delays," European Journal of Operational Research, Elsevier, vol. 226(3), pages 602-614.
    7. X Li & P Beullens & D Jones & M Tamiz, 2009. "An integrated queuing and multi-objective bed allocation model with application to a hospital in China," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 330-338, March.
    8. Jing Fan & Hui Shi, 0. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-13.
    9. Zhaohui Li & Haiyue Yu & Zhaowei Zhou, 2024. "Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-29, July.
    10. J D Griffiths & N Price-Lloyd & M Smithies & J E Williams, 2005. "Modelling the requirement for supplementary nurses in an intensive care unit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 126-133, February.
    11. Mengzhuo Bai & Chunyang Ren & Yang Liu, 2015. "A note of reduced dimension optimization algorithm of assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 841-849, November.
    12. repec:dgr:rugsom:02a63 is not listed on IDEAS
    13. Amir Elalouf & Guy Wachtel, 2022. "Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies," SN Operations Research Forum, Springer, vol. 3(1), pages 1-46, March.
    14. Veneklaas, W. & Leeftink, A.G. & van Boekel, P.H.C.M. & Hans, E.W., 2021. "On the design, implementation, and feasibility of hospital admission services: The admission lounge case," Omega, Elsevier, vol. 100(C).
    15. Dujuan Wang & Feng Liu & Yunqiang Yin & Jianjun Wang & Yanzhang Wang, 2015. "Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 967-981, November.
    16. Bing Wang & Xingbao Han & Xianxia Zhang & Shaohua Zhang, 2015. "Predictive-reactive scheduling for single surgical suite subject to random emergency surgery," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 949-966, November.
    17. Utley, Martin & Gallivan, Steve & Davis, Katie & Daniel, Patricia & Reeves, Paula & Worrall, Jennifer, 2003. "Estimating bed requirements for an intermediate care facility," European Journal of Operational Research, Elsevier, vol. 150(1), pages 92-100, October.
    18. Mark Fackrell, 2009. "Modelling healthcare systems with phase-type distributions," Health Care Management Science, Springer, vol. 12(1), pages 11-26, March.
    19. Donald K. K. Lee & Stefanos A. Zenios, 2009. "Optimal Capacity Overbooking for the Regular Treatment of Chronic Conditions," Operations Research, INFORMS, vol. 57(4), pages 852-865, August.
    20. Wenhua Li & Xing Chai, 2019. "The medical laboratory scheduling for weighted flow-time," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 83-94, January.
    21. Lu Liu & Chun Wang & Jianjun Wang, 2019. "A combinatorial auction mechanism for surgical scheduling considering surgeon’s private availability information," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 405-417, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0204-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.