IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v13y2007i1d10.1007_s10878-006-9011-y.html
   My bibliography  Save this article

A simple linear time approximation algorithm for multi-processor job scheduling on four processors

Author

Listed:
  • Jingui Huang

    (Central South University)

  • Jianer Chen

    (Central South University
    Texas A&M University)

  • Songqiao Chen

    (Central South University)

  • Jianxin Wang

    (Central South University)

Abstract

Multiprocessor job scheduling problem has become increasingly interesting, for both theoretical study and practical applications. Theoretical study of the problem has made significant progress recently, which, however, seems not to imply practical algorithms for the problem, yet. Practical algorithms have been developed only for systems with three processors and the techniques seem difficult to extend to systems with more than three processors. This paper offers new observations and introduces new techniques for the multiprocessor job scheduling problem on systems with four processors. A very simple and practical linear time approximation algorithm of ratio bounded by 1.5 is developed for the multi-processor job scheduling problem P 4|fix|C max, which significantly improves previous results. Our techniques are also useful for multiprocessor job scheduling problems on systems with more than four processors.

Suggested Citation

  • Jingui Huang & Jianer Chen & Songqiao Chen & Jianxin Wang, 2007. "A simple linear time approximation algorithm for multi-processor job scheduling on four processors," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 33-45, January.
  • Handle: RePEc:spr:jcomop:v:13:y:2007:i:1:d:10.1007_s10878-006-9011-y
    DOI: 10.1007/s10878-006-9011-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-006-9011-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-006-9011-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory Dobson & Uday S. Karmarkar, 1989. "Simultaneous Resource Scheduling to Minimize Weighted Flow Times," Operations Research, INFORMS, vol. 37(4), pages 592-600, August.
    2. Jianer Chen & Chung‐Yee Lee, 1999. "General multiprocessor task scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 57-74, February.
    3. Chung-Yee Lee & Lei Lei & Michael Pinedo, 1997. "Current trends in deterministic scheduling," Annals of Operations Research, Springer, vol. 70(0), pages 1-41, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
    2. Bukchin, Yossi & Raviv, Tal & Zaides, Ilya, 2020. "The consecutive multiprocessor job scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 427-438.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    2. Jianer Chen & Chung‐Yee Lee, 1999. "General multiprocessor task scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 57-74, February.
    3. F Sivrikaya şerifoğlu & G Ulusoy, 2004. "Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 504-512, May.
    4. Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
    5. T.C.E. Cheng & B.M.T. Lin & A. Toker, 2000. "Makespan minimization in the two‐machine flowshop batch scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 128-144, March.
    6. Steinhofel, K. & Albrecht, A. & Wong, C. K., 1999. "Two simulated annealing-based heuristics for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 118(3), pages 524-548, November.
    7. Huo, Yumei & Zhao, Hairong, 2015. "Total completion time minimization on multiple machines subject to machine availability and makespan constraints," European Journal of Operational Research, Elsevier, vol. 243(2), pages 547-554.
    8. Huang, Wei & Chen, Bo, 2007. "Scheduling of batch plants: Constraint-based approach and performance investigation," International Journal of Production Economics, Elsevier, vol. 105(2), pages 425-444, February.
    9. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    10. Liao, Ching-Jong & Shyur, Der-Lin & Lin, Chien-Hung, 2005. "Makespan minimization for two parallel machines with an availability constraint," European Journal of Operational Research, Elsevier, vol. 160(2), pages 445-456, January.
    11. Ilan Reuven Cohen & Izack Cohen & Iyar Zaks, 2024. "A theoretical and empirical study of job scheduling in cloud computing environments: the weighted completion time minimization problem with capacitated parallel machines," Annals of Operations Research, Springer, vol. 338(1), pages 429-452, July.
    12. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    13. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    14. George L. Vairaktarakis & Chung‐Yee Lee, 2004. "Analysis of algorithms for two‐stage flowshops with multi‐processor task flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 44-59, February.
    15. Huo, Yumei & Zhao, Hairong, 2018. "Two machine scheduling subject to arbitrary machine availability constraint," Omega, Elsevier, vol. 76(C), pages 128-136.
    16. Xiuli Wang & T. C. Edwin Cheng, 2007. "Machine scheduling with an availability constraint and job delivery coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 11-20, February.
    17. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    18. Liu, Peihai & Lu, Xiwen, 2016. "Integrated production and job delivery scheduling with an availability constraint," International Journal of Production Economics, Elsevier, vol. 176(C), pages 1-6.
    19. Chen, Wen-Jinn, 2009. "Minimizing number of tardy jobs on a single machine subject to periodic maintenance," Omega, Elsevier, vol. 37(3), pages 591-599, June.
    20. C.T. Ng & Mikhail Y. Kovalyov, 2004. "An FPTAS for scheduling a two‐machine flowshop with one unavailability interval," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 307-315, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:13:y:2007:i:1:d:10.1007_s10878-006-9011-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.