IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v38y2010i5p383-392.html
   My bibliography  Save this article

Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities

Author

Listed:
  • Cha, Young-Ho
  • Kim, Yeong-Dae

Abstract

In this paper, we consider the fire scheduling problem (FSP) for field artillery, which is the problem of scheduling operations of firing at given targets with a given set of weapons. We consider a situation in which the number of available weapons is smaller than the number of targets, the targets are assigned to the weapons already, and targets may move and hence the probability that a target is destroyed by a firing attack decreases as time passes. We present a branch and bound algorithm for the FSP with the objective of minimizing total threat of the targets, which is expressed as a function of the destruction probabilities of the targets. Results of computational tests show that the suggested algorithm solves problems of a medium size in a reasonable amount of computation time.

Suggested Citation

  • Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
  • Handle: RePEc:eee:jomega:v:38:y:2010:i:5:p:383-392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(09)00072-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel Matlin, 1970. "A Review of the Literature on the Missile-Allocation Problem," Operations Research, INFORMS, vol. 18(2), pages 334-373, April.
    2. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    3. Ravindra K. Ahuja & Arvind Kumar & Krishna C. Jha & James B. Orlin, 2007. "Exact and Heuristic Algorithms for the Weapon-Target Assignment Problem," Operations Research, INFORMS, vol. 55(6), pages 1136-1146, December.
    4. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
    5. Alan S. Manne, 1958. "A Target-Assignment Problem," Operations Research, INFORMS, vol. 6(3), pages 346-351, June.
    6. E Erdem & N E Ozdemirel, 2003. "An evolutionary approach for the target allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(9), pages 958-969, September.
    7. F Sivrikaya şerifoğlu & G Ulusoy, 2004. "Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 504-512, May.
    8. Chen, Jen-Shiang, 2008. "Optimization models for the tool change scheduling problem," Omega, Elsevier, vol. 36(5), pages 888-894, October.
    9. Gregory Dobson & Uday S. Karmarkar, 1989. "Simultaneous Resource Scheduling to Minimize Weighted Flow Times," Operations Research, INFORMS, vol. 37(4), pages 592-600, August.
    10. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    11. Jingui Huang & Jianer Chen & Songqiao Chen & Jianxin Wang, 2007. "A simple linear time approximation algorithm for multi-processor job scheduling on four processors," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 33-45, January.
    12. Chung-Yee Lee & Lei Lei & Michael Pinedo, 1997. "Current trends in deterministic scheduling," Annals of Operations Research, Springer, vol. 70(0), pages 1-41, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmet Silav & Esra Karasakal & Orhan Karasakal, 2022. "Bi-objective dynamic weapon-target assignment problem with stability measure," Annals of Operations Research, Springer, vol. 311(2), pages 1229-1247, April.
    2. Rakes, Terry R. & Deane, Jason K. & Paul Rees, Loren, 2012. "IT security planning under uncertainty for high-impact events," Omega, Elsevier, vol. 40(1), pages 79-88, January.
    3. Ahmet Silav & Orhan Karasakal & Esra Karasakal, 2019. "Bi‐objective missile rescheduling for a naval task group with dynamic disruptions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 596-615, October.
    4. Anissa Frini & Adel Guitouni & Abderrezak Benaskeur, 2017. "Solving Dynamic Multi-Criteria Resource-Target Allocation Problem Under Uncertainty: A Comparison of Decomposition and Myopic Approaches," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1465-1496, November.
    5. Younglak Shim & Michael P. Atkinson, 2018. "Analysis of artillery shoot‐and‐scoot tactics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 242-274, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander G. Kline & Darryl K. Ahner & Brian J. Lunday, 2019. "Real-time heuristic algorithms for the static weapon target assignment problem," Journal of Heuristics, Springer, vol. 25(3), pages 377-397, June.
    2. Anissa Frini & Adel Guitouni & Abderrezak Benaskeur, 2017. "Solving Dynamic Multi-Criteria Resource-Target Allocation Problem Under Uncertainty: A Comparison of Decomposition and Myopic Approaches," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1465-1496, November.
    3. Alexandre Colaers Andersen & Konstantin Pavlikov & Túlio A. M. Toffolo, 2022. "Weapon-target assignment problem: exact and approximate solution algorithms," Annals of Operations Research, Springer, vol. 312(2), pages 581-606, May.
    4. Ahmet Silav & Orhan Karasakal & Esra Karasakal, 2019. "Bi‐objective missile rescheduling for a naval task group with dynamic disruptions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 596-615, October.
    5. Davis, Michael T. & Robbins, Matthew J. & Lunday, Brian J., 2017. "Approximate dynamic programming for missile defense interceptor fire control," European Journal of Operational Research, Elsevier, vol. 259(3), pages 873-886.
    6. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    7. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    8. Hamed Hendizadeh, S. & Faramarzi, Hamidreza & Mansouri, S.Afshin & Gupta, Jatinder N.D. & Y ElMekkawy, Tarek, 2008. "Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 111(2), pages 593-605, February.
    9. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).
    10. Lu, Yiping & Chen, Danny Z., 2021. "A new exact algorithm for the Weapon-Target Assignment problem," Omega, Elsevier, vol. 98(C).
    11. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    12. Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
    13. Antonio Costa & Fulvio Antonio Cappadonna & Sergio Fichera, 2017. "A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1269-1283, August.
    14. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    15. Jingui Huang & Jianer Chen & Songqiao Chen & Jianxin Wang, 2007. "A simple linear time approximation algorithm for multi-processor job scheduling on four processors," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 33-45, January.
    16. Li, Guo & Li, Na & Sambandam, Narayanasamy & Sethi, Suresh P. & Zhang, Faping, 2018. "Flow shop scheduling with jobs arriving at different times," International Journal of Production Economics, Elsevier, vol. 206(C), pages 250-260.
    17. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    18. J N D Gupta & J E Schaller, 2006. "Minimizing flow time in a flow-line manufacturing cell with family setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 163-176, February.
    19. Rajendran, Chandrasekharan & Ziegler, Hans, 2003. "Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 149(3), pages 513-522, September.
    20. Juan Li & Bin Xin & Panos M. Pardalos & Jie Chen, 2021. "Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms," Annals of Operations Research, Springer, vol. 296(1), pages 639-666, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:38:y:2010:i:5:p:383-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.