IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v305y2021i1d10.1007_s10479-021-04210-0.html
   My bibliography  Save this article

On solving cycle problems with Branch-and-Cut: extending shrinking and exact subcycle elimination separation algorithms

Author

Listed:
  • Gorka Kobeaga

    (Basque Center for Applied Mathematics BCAM)

  • María Merino

    (Basque Center for Applied Mathematics BCAM
    University of the Basque Country UPV/EHU)

  • Jose A. Lozano

    (Basque Center for Applied Mathematics BCAM
    University of the Basque Country UPV/EHU)

Abstract

In this paper, we extend techniques developed in the context of the Travelling Salesperson Problem for cycle problems. Particularly, we study the shrinking of support graphs and the exact algorithms for subcycle elimination separation problems. The efficient application of the considered techniques has proved to be essential in the Travelling Salesperson Problem when solving large size problems by Branch-and-Cut, and this has been the motivation behind this work. Regarding the shrinking of support graphs, we prove the validity of the Padberg–Rinaldi general shrinking rules and the Crowder–Padberg subcycle-safe shrinking rules. Concerning the subcycle separation problems, we extend two exact separation algorithms, the Dynamic Hong and the Extended Padberg–Grötschel algorithms, which are shown to be superior to the ones used so far in the literature of cycle problems. The proposed techniques are empirically tested in 24 subcycle elimination problem instances generated by solving the Orienteering Problem (involving up to 15,112 vertices) with Branch-and-Cut. The experiments suggest the relevance of the proposed techniques for cycle problems. The obtained average speedup for the subcycle separation problems in the Orienteering Problem when the proposed techniques are used together is around 50 times in medium-sized instances and around 250 times in large-sized instances.

Suggested Citation

  • Gorka Kobeaga & María Merino & Jose A. Lozano, 2021. "On solving cycle problems with Branch-and-Cut: extending shrinking and exact subcycle elimination separation algorithms," Annals of Operations Research, Springer, vol. 305(1), pages 107-136, October.
  • Handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-04210-0
    DOI: 10.1007/s10479-021-04210-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04210-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04210-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulrich Pferschy & Rostislav Staněk, 2017. "Generating subtour elimination constraints for the TSP from pure integer solutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 231-260, March.
    2. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    3. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1998. "Solving the Orienteering Problem through Branch-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 133-148, May.
    4. Petra Bauer, 1997. "The Circuit Polytope: Facets," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 110-145, February.
    5. Hao, Jianxiu. & Orlin, James B., 1953-., 1992. "A faster algorithm for finding the minimum cut in a graph," Working papers 3372-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Harlan Crowder & Manfred W. Padberg, 1980. "Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality," Management Science, INFORMS, vol. 26(5), pages 495-509, May.
    7. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    8. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    2. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    3. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    4. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    6. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    7. Leticia Vargas & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2017. "A dynamic programming operator for tour location problems applied to the covering tour problem," Journal of Heuristics, Springer, vol. 23(1), pages 53-80, February.
    8. Markus Sinnl, 2021. "Mixed-integer programming approaches for the time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 497-542, June.
    9. Mehdi El Krari & Belaïd Ahiod & Youssef Bouazza El Benani, 2021. "A pre-processing reduction method for the generalized travelling salesman problem," Operational Research, Springer, vol. 21(4), pages 2543-2591, December.
    10. H Tang & E Miller-Hooks, 2005. "Algorithms for a stochastic selective travelling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 439-452, April.
    11. Vicky Mak & Tommy Thomadsen, 2006. "Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem," Journal of Combinatorial Optimization, Springer, vol. 11(4), pages 421-434, June.
    12. Gianpaolo Ghiani & Gilbert Laporte & Frédéric Semet, 2006. "The Black and White Traveling Salesman Problem," Operations Research, INFORMS, vol. 54(2), pages 366-378, April.
    13. Bruce Golden & S. Raghavan & Daliborka Stanojević, 2005. "Heuristic Search for the Generalized Minimum Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 290-304, August.
    14. Morteza Keshtkaran & Koorush Ziarati, 2016. "A novel GRASP solution approach for the Orienteering Problem," Journal of Heuristics, Springer, vol. 22(5), pages 699-726, October.
    15. Shahin Gelareh & Bernard Gendron & Saïd Hanafi & Rahimeh Neamatian Monemi & Raca Todosijević, 2020. "The selective traveling salesman problem with draft limits," Journal of Heuristics, Springer, vol. 26(3), pages 339-352, June.
    16. Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
    17. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    18. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    19. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    20. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-04210-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.