IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v35y2018i1d10.1007_s00357-018-9249-y.html
   My bibliography  Save this article

A New Support Vector Machine Plus with Pinball Loss

Author

Listed:
  • Wenxin Zhu

    (TianJin Agricultural University)

  • Yunyan Song

    (Tianjin University of Technology)

  • Yingyuan Xiao

    (Tianjin University of Technology
    Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology)

Abstract

The hinge loss support vector machine (SVM) is sensitive to outliers. This paper proposes a new support vector machine with a pinball loss function (PSVM+). The new model is less sensitive to noise, especially the feature noise around the decision boundary. Furthermore, the PSVM+ is more stable than the hinge loss support vector machine plus (SVM+) for re-sampling. It also embeds the additional information into the corresponding optimization problem, which is helpful to further improve the learning performance. Meanwhile, the computational complexity of the PSVM+ is similar to that of the SVM+.

Suggested Citation

  • Wenxin Zhu & Yunyan Song & Yingyuan Xiao, 2018. "A New Support Vector Machine Plus with Pinball Loss," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 52-70, April.
  • Handle: RePEc:spr:jclass:v:35:y:2018:i:1:d:10.1007_s00357-018-9249-y
    DOI: 10.1007/s00357-018-9249-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-018-9249-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-018-9249-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Xiaolin & Shi, Lei & Suykens, Johan A.K., 2014. "Asymmetric least squares support vector machine classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 395-405.
    2. Trafalis, Theodore B. & Gilbert, Robin C., 2006. "Robust classification and regression using support vector machines," European Journal of Operational Research, Elsevier, vol. 173(3), pages 893-909, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas L. Steinley, 2019. "Editorial: Journal of Classification Vol. 36-3," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 393-396, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ximing Wang & Neng Fan & Panos M. Pardalos, 2018. "Robust chance-constrained support vector machines with second-order moment information," Annals of Operations Research, Springer, vol. 263(1), pages 45-68, April.
    2. Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
    3. Petros Xanthopoulos & Mario Guarracino & Panos Pardalos, 2014. "Robust generalized eigenvalue classifier with ellipsoidal uncertainty," Annals of Operations Research, Springer, vol. 216(1), pages 327-342, May.
    4. Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
    5. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    6. Farooq, Muhammad & Steinwart, Ingo, 2017. "An SVM-like approach for expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 159-181.
    7. Lin, Fengming & Fang, Shu-Cherng & Fang, Xiaolei & Gao, Zheming & Luo, Jian, 2024. "A distributionally robust chance-constrained kernel-free quadratic surface support vector machine," European Journal of Operational Research, Elsevier, vol. 316(1), pages 46-60.
    8. Huimin Pei & Qiang Lin & Liran Yang & Ping Zhong, 2021. "A novel semi-supervised support vector machine with asymmetric squared loss," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 159-191, March.
    9. Couellan, Nicolas & Wang, Wenjuan, 2017. "Uncertainty-safe large scale support vector machines," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 215-230.
    10. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.
    11. Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
    12. José A. Sáez, 2022. "Noise Models in Classification: Unified Nomenclature, Extended Taxonomy and Pragmatic Categorization," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    13. Peter Tsyurmasto & Michael Zabarankin & Stan Uryasev, 2014. "Value-at-risk support vector machine: stability to outliers," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 218-232, July.
    14. Mohammad Poursaeidi & O. Kundakcioglu, 2014. "Robust support vector machines for multiple instance learning," Annals of Operations Research, Springer, vol. 216(1), pages 205-227, May.
    15. Maryam Abaszade & Sohrab Effati, 2019. "A New Method for Classifying Random Variables Based on Support Vector Machine," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 152-174, April.
    16. Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.
    17. Chen, Yan-Cheng & Su, Chao-Ton, 2016. "Distance-based margin support vector machine for classification," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 141-152.
    18. Cassioli, A. & Chiavaioli, A. & Manes, C. & Sciandrone, M., 2013. "An incremental least squares algorithm for large scale linear classification," European Journal of Operational Research, Elsevier, vol. 224(3), pages 560-565.
    19. Ye Tian & Zhibin Deng & Jian Luo & Yueqing Li, 2018. "An intuitionistic fuzzy set based S $$^3$$ 3 VM model for binary classification with mislabeled information," Fuzzy Optimization and Decision Making, Springer, vol. 17(4), pages 475-494, December.
    20. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:35:y:2018:i:1:d:10.1007_s00357-018-9249-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.