IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v109y2017icp215-230.html
   My bibliography  Save this article

Uncertainty-safe large scale support vector machines

Author

Listed:
  • Couellan, Nicolas
  • Wang, Wenjuan

Abstract

The issue of large scale binary classification when data is subject to random perturbations is addressed. The proposed model integrates a learning framework that adjusts its robustness to noise during learning. The method avoids over-conservative situations that can be encountered with worst-case robust support vector machine formulations. The algorithm could be seen as a technique to learn the support-set of the noise distribution during the training process. This is achieved by introducing optimization variables that control the magnitude of the noise perturbations that should be taken into account. The magnitude is tuned by optimizing a generalization error. Only rough estimates of perturbations bounds are required. Additionally, a stochastic bi-level optimization technique is proposed to solve the resulting formulation. The algorithm performs very cheap stochastic subgradient moves and is therefore well suited to large datasets. Encouraging experimental results show that the technique outperforms robust second order cone programming formulations.

Suggested Citation

  • Couellan, Nicolas & Wang, Wenjuan, 2017. "Uncertainty-safe large scale support vector machines," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 215-230.
  • Handle: RePEc:eee:csdana:v:109:y:2017:i:c:p:215-230
    DOI: 10.1016/j.csda.2016.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302985
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aharon Ben-Tal & Arkadi Nemirovski, 2009. "On Safe Tractable Approximations of Chance-Constrained Linear Matrix Inequalities," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 1-25, February.
    2. Trafalis, Theodore B. & Gilbert, Robin C., 2006. "Robust classification and regression using support vector machines," European Journal of Operational Research, Elsevier, vol. 173(3), pages 893-909, September.
    3. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    4. Ali Dehghan & Theodore Trafalis, 2012. "Examining Churn and Loyalty Using Support Vector Machine," Business and Management Research, Business and Management Research, Sciedu Press, vol. 1(4), pages 153-161, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carvalho, Margarida & Lodi, Andrea, 2023. "A theoretical and computational equilibria analysis of a multi-player kidney exchange program," European Journal of Operational Research, Elsevier, vol. 305(1), pages 373-385.
    2. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    3. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    4. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    5. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    6. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    7. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    8. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    9. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    10. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    11. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    12. Wei Jiang & Huiqiang Wang & Bingyang Li & Haibin Lv & Qingchuan Meng, 2020. "A multi-user multi-operator computing pricing method for Internet of things based on bi-level optimization," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477199, January.
    13. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    14. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    15. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    16. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    17. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    18. Magnus Hoffmann & Grégoire Rota‐Graziosi, 2020. "Endogenous timing in the presence of non‐monotonicities," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 359-402, February.
    19. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    20. Christoph Buchheim & Dorothee Henke & Jannik Irmai, 2022. "The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 521-542, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:109:y:2017:i:c:p:215-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.