IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3736-d939000.html
   My bibliography  Save this article

Noise Models in Classification: Unified Nomenclature, Extended Taxonomy and Pragmatic Categorization

Author

Listed:
  • José A. Sáez

    (Department of Statistics and Operations Research, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain)

Abstract

This paper presents the first review of noise models in classification covering both label and attribute noise. Their study reveals the lack of a unified nomenclature in this field. In order to address this problem, a tripartite nomenclature based on the structural analysis of existing noise models is proposed. Additionally, a revision of their current taxonomies is carried out, which are combined and updated to better reflect the nature of any model. Finally, a categorization of noise models is proposed from a practical point of view depending on the characteristics of noise and the study purpose. These contributions provide a variety of models to introduce noise, their characteristics according to the proposed taxonomy and a unified way of naming them, which will facilitate their identification and study, as well as the reproducibility of future research.

Suggested Citation

  • José A. Sáez, 2022. "Noise Models in Classification: Unified Nomenclature, Extended Taxonomy and Pragmatic Categorization," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3736-:d:939000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Xiaolin & Shi, Lei & Suykens, Johan A.K., 2014. "Asymmetric least squares support vector machine classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 395-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
    2. Wenxin Zhu & Yunyan Song & Yingyuan Xiao, 2018. "A New Support Vector Machine Plus with Pinball Loss," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 52-70, April.
    3. Farooq, Muhammad & Steinwart, Ingo, 2017. "An SVM-like approach for expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 159-181.
    4. Huimin Pei & Qiang Lin & Liran Yang & Ping Zhong, 2021. "A novel semi-supervised support vector machine with asymmetric squared loss," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 159-191, March.
    5. Ye Tian & Zhibin Deng & Jian Luo & Yueqing Li, 2018. "An intuitionistic fuzzy set based S $$^3$$ 3 VM model for binary classification with mislabeled information," Fuzzy Optimization and Decision Making, Springer, vol. 17(4), pages 475-494, December.
    6. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3736-:d:939000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.